TOTAL VARIATION REGULARIZATION FOR IMAGE
DENOISING; I. GEOMETRIC THEORY.

WILLIAM K. ALLARD

ABSTRACT. Let Q be an open subset of R™ where 2 < n < 7; we assume
n < 2 because the case n = 1 has been treated elsewhere (see [Alli]) and is
quite different from the case n > 1; we assume n < 7 is that our work will
make use of the regularity theory for area minimizing hypersurfaces. Let

F(2) = L1(2) N Loo (2))-
Suppose s € F(2) and Suppose
7 :R — [0,00)

is locally Lipschitzian, positive on R ~ {0} and zero at zero. Let
F(f)= [ 2@ = s(@l) e tor f € F(@);

here L™ is Lebesgue measure on R™. Note that F(f) = 0 if and only if
f(z) = s(z) for L™ almost all z € R™. In the denoising literature F' would be
called a fidelity term in that it measures deviation from s which could be a
noisy grayscale image. Let ¢ > 0 and let

Fe(f) =€TV(f) + F(f) for f e F(Q);

here TV(f) is the total variation of f. A minimizer of F. is called a total
variation regularization of s. Rudin, Osher and Fatemi and Chan and Esedoglu
have studied total variation regularizations of F' where v(y) = y? and v(y) =
ly|, y € R, respectively.

Let f be a total variation regularization of F'. The first main result of this
paper is that the reduced boundaries of the sets {f > y}, y € R, are embedded
Ct# hypersurfaces for any p € (0,1) in case n > 2 and any p € (0,1] in
case n = 2; moreover, the generalized mean curvature of the sets {f > y}
will be bounded in terms of y, € and the magnitude of |s| near the point in
question. In fact, this result holds for a rather general class of fidelities. A
second result gives precise curvature information about the reduced boundary
of {f > y} near points where s is smooth provided F is convex. This curvature
information will allow us to construct a number of interesting examples of total
variation regularizations in this and in a subsequent paper.

In addition, a number of other theorems about regularizations are proved.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS.

Throughout this paper, n is an integer such that 2 < n < 7, L™ is Lebesgue
measure on R™ and (2 is an open subset of R™.

We require n > 2 because the problems we consider are very different in case
n = 1; see [Alli]. We require n < 7 because we will be using the regularity theory
of mass minimizing integral currents in R™ of codimension one; as is well known,
these currents are free of singularities when n < 7 but may possess singularities if
n > 7; see [FE, 5.4.15]. This work is motivated by image denoising applications in
which it is often the case that 1 <n < 4.

1.1. Total variation. This work is based on the notion of the total variation of a
locally summable function, which we now define.

Definition 1.1.1. Suppose f € LI¢(Q). Then TV(f,-), the total variation of
f, is the largest Borel reqular measure on Q such that, for any open subset U of €2,
TV (f,U) equals the supremum of

/ fdiv X dcm
Q

as X ranges over Ct vector fields on Q whose support is a compact subset of U and
for which | X (x)] < 1 whenever x € Q.

In particular, if f is C* and B is a Borel subset of Q then
(1.1.1) TV(f,B) = / |V fldL™.
B

Moreover, if E a Lebesgue measurable subset of 2 with Lipschitz boundary then
TV (E, B) equals the (n — 1) dimensional Hausdorff measure of the intersection of
the boundary of E with B; here and in what follows we will frequently write “E”
for “1g” where 1g is the indicator function of E.

Suppose f € L{OC(Q). We say f is of bounded variation on  if TV(f,Q)
is finite. If TV(f,-) is a Radon measure on  which will be the case if and only
if TV(f,K) < oo whenever K is a compact subset of {2 we say f is of locally
bounded variation on Q. We let

BV(Q) and BVY¢(Q)

be the vector spaces of those f € Ly(£2) which are of bounded variation on Q and
of locally bounded variation on §2, respectively.
If F is a Lebesgue measurable subset of {2 the perimeter of E is, by definition,t

TV (E,Q); we say F is of locally finite perimeter if F € BVZOC(Q).
1.2. (e, F') -minimizers.
Definition 1.2.1. We let

F(€) = L1 (2) N Lo (2)

with the topology induced from its inclusion in Lq(Q).
We let
F(Q)
be the family of real valued functions on F(2).
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Suppose F € F(Q) and 0 < € < co. We let
m.(F)
be the set of f € BVZOC(Q) such that for any compact subset K of 0 we have
eIV(f,K)+ F(f) < €TV(g,K) + F(g)
whenever g € F(Q) and g is essentially equal to f in Q ~ K. We say a member of
m.(F) is a (¢, F')-minimizer.

It will be useful to extend the foregoing notions to functionals defined on sets,
as follows.

Definition 1.2.2. We let

M(Q)
be the family of Lebesgue measurable subsets D of Q such that L™(D) < oo with the
topology induced by its embedding in F(Q) via M(Q2) > E+— 1. We let

M(€2)
be the family of real valued functions on M().

Suppose M € M(Q2) and 0 < € < co. We let

n (M)
be the set of D € M(Q) with locally finite perimeter such that for any compact
subset K of Q we have

eTV(D,K)+ M(D) <eTV(E,K)+ M(E)
whenever E € M(Q) and E is essentially equal to D in Q ~ K. We say a member
of nc(M) is a (¢, M )-minimizer.
1.3. Denoising. Suppose
s € F(§);
s could be a grayscale representation of a degraded image which we wish to denoise.
If n = 2 then Q could be the computer screen. Suppose
v:R—[0,00)
is locally Lipschitzian, positive on R ~ {0} and zero at zero. We define F' € F(2)
by letting
P = [ 9(f@) = s@) de"sfor 1 € F(@),

In the context of denoising F' would be called a fidelity; this is because for each
1 > 0 there is § > 0 such that

F(fy<dé = /Q|f—s\d£”<n whenever f € F(Q).

If 0 < € < oo the members of m.(F) would be called total variation regular-
izations of s (with respect to the fidelity F and smoothing parameter
€).

For a very informative discussion of the use of total variation regularizations
in the field of image processing see the Introduction of [CE]. We will not dis-
cuss image processing any further except to note that the notion of total variation
regularization in image processing is useful for other purposes besides denoising.
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Of particular interest is when 1 < p < oo and
1
(1.3.1) v(y) = —|y|? whenever y € R.
p

Rudin, Osher and Fatemi [ROF] studied the case p = 2 and Chan and Esedoglu
[CE] studied the case p = 1.

The main goal of this paper is to state and prove theorems about the regularity
and geometric properties of the sets {f > y}, vy € R, when f is a minimizer of F..
We will find that the geometry of these sets is rather restricted. These results will
allow us to construct an number of interesting examples of minimizers in [AW2], a
sequel to this paper; we hope these examples will provide insights into the nature
of total variation regularization. At the end of this paper we will determine m,(F)
when s is the indicator function of a square and -y is as in (1.3.1).

1.4. The space C,(92). Suppose 0 < A < oo. For reason which will become clear
shortly it will be useful to introduce
Cx(©)
which, by definition, is the family of Lebesgue measurable subsets D of {2 such that
TV(D,K) <TV(E,K)+ X"((D ~ E)U(E ~ D))

whenever K is a compact subset of €2, F is a Lebesgue measurable subset of €2 and
E is essentially equal to D in 2 ~ K. We now state a regularity theorem for C,(£2).

Theorem 1.4.1 (Regularity Theorem). Suppose 0 < u < oo and 0 < § < 1. There
is 0 such that 0 < 0 < 1 and with the following property:
Suppose
(i) 0 < A< oo and D € C\(Q);
(ii) M is the support of the generalized gradient of the indicator function of D;
(iii) ae M,0< R< oo and {x e R": |z —a| < R} C Q;
(iv) AR<0,r=0R and B={z € R": |z —a| <r}.
Then M N B is an embedded hypersurface in Q of class C*TF; moreover, if N is a
continuous field of unit normals to M N B then

IN(z) — N(w)| < B(|z —a|/r)" whenever xz,w € M N B;

finally, if L is a line perpendicular to the tangent hyperplane to M N B at a then L
intersects M N B in a most one point.
In case n = 2 we may take p = 1.

The proof of this Theorem is an exercise in the use of techniques from area
minimization theory, the theory of functions of least gradient and geometric measure
theory which have been in the literature for over thirty years.

The relevance of Cx(2) to image denoising is as follows.

Theorem 1.4.2. Suppose s,y and F are as in 1.3, 0 < € < 00, f € m(F) and
y € R. Then

(1.4.1) {f >y} €Cr(Q).

where X is the Lipschitz constant of v on [ess inf(f — s),ess sup (f — s)] divided
by €.

See 6.2 for the proof.
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1.5. Localizing with respect to the value. For the remainder of this Intro-
duction we suppose s,v,F are as in 1.3 and we suppose vy, and therefore F, is
convez.

For each y € R we define

L,, U, e M(Q)
by letting

F(z1g) — F(yl F(z1g) — F(yl
L,(E) = liminf (1) (vls) and Uy(E) = limsup (z1z) g E);

2=y Z—Y zZ—Y 2=y

here 1g is the indicator function of E. It is a simple matter to verify that L, and
U, are finite; see 7. Evidently, L, < U, for y € R. We will show later that L, = U,
for all but countable many y € R.

Theorem 1.5.1. Suppose f € m.(F) and y € R ~ {0}. Then
{f <ytencd=Ly) and {f<y}en(-U,) ify<0

and

{fzy}endly) and {f>y}en(U,) ify>0.

In fact, this Theorem holds for a class functionals F' somewhat more general
than those specified above.
A sort of converse to the preceding Theorem is as follows.

Theorem 1.5.2. Suppose G is a L™ x L' measurable subset of  x R such that
Gx(2x[0,0)) and (Qx(—00,0))~G

have finite L™ x L' measure; for L' almost ally € R ~ {0}, {x € Q: (2,y) € G} €
n(Uy) ify >0 and {x € Q : (z,y) € G} € n(-U,) if y < 0; and f € F(Q) is
such that

0o 0
f :/ 1{mz(w,y)EG} dﬁly _/ 1{w(w7y)€G} dﬁly
0 —o0
Then f € m(F).
This result is of particular interest when v(y) = |y| for y € R; see 9.2.

1.6. Results on curvature. In the light of Theorem 1.5.1 we are motivated to
study m.(M) where M € M(Q).
Theorem 1.6.1. Suppose

(i) M e M(Q), ¢ € Lo(R) and

M(E) = /ECdE” whenever E € M(Q);

(ii) U is an open subset of ), j is a nonnegative integer, 0 < p < 1; and ¢|U
is of class CITH;

(iii) 0 < e < o0, D € n, (M) and M is the intersection of U with the support of
the generalized gradient of the indicator function of D.

Then M is and embedded hypersurface of U of class C7T2TH and

(1.6.1) H(z) = f%C(x)N(x) forze M
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where H is the mean curvature vector of M and N is the outward pointing unit
normal along M to the support of generalized function corresponding to the indicator
function of D.

Moreover, if ¢ is of class C* on U and Q is the square of the length of the second
fundamental form of M as defined in 3 then

(1.6.2) /M e (IVamo(@)]? + ¢(2)°Q(z)) — ¢(z)*V((2) ® N(z) dH" 'z >0

for any ¢ € D(Q); here, for each x € M, V() is the orthogonal projection of
Vo(x) on Tan(M,x) and Q is the square of the length of the second fundamental
form of M.

See Section 3 for the relevant definitions. This Theorem will apply in the context
of denoising if s as in 1.3 is sufficiently regular in U.
Every one of these results will be used in our determination of minimizers.

1.7. Acknowledgments. It is a pleasure to thank Kevin Vixie for acquainting me
with this area of research. In the course of carrying out this work I profited from
conversations with Kevin Vixie and Selim Esedoglu and benefited from the support
of Los Alamos National Laboratory.

2. SOME BASIC NOTATIONS AND CONVENTIONS.

We find the mathematical infrastructure of normal and integral currents to be
indispensable in carrying out this work. For that reason we will adopt, for the
most part, the notation and terminology of [FE]; note the extensive glossary, list
of notations and index starting on page 669 of that book. We avoided using that
notation and terminology in the Introduction in order to make it more accessible
to readers not familiar with [FE].

We let

N and P

be the set of nonnegative integers and the set of positive integers, respectively.
Whenever a € R™ and 0 < r < co we let
Ut(a,r)={zeR": |z —a|<r} and B"(a,r)={x €R":|z—a| <r}.
We let
Sl ={z eR": |z| =1}
We let
e,...,e, and e', ... e"
be the standard basis vectors and covectors for R™ and its dual space, respectively.
We let .
E”:el/\--~/\e”6/\ R™
be the standard orientation on R™.
We let
int, cl, and bdry
stand for “interior”, “closure” and “boundary”, respectively.
Whenever A C R™ and a is an accumulation point of A we let

Tan(A4,a) = m c{t(z—a):0<t<ooand x € AN (B"*(a,r) ~{a})}

0<r<oo
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and we let

Nor(4,a) = ﬂ {veR" :vew <0}
weTan(A,a)

We let
H™, m € [0,00),

m dimensional Hausdorff measure on R".
Whenever A, D, E are Lebesgue measurable subsets of 2 we let

SA(D,E) = LY(AN (D ~ E)U(E ~ D))) = /A p — 1p| dC™;

and note that
(2.0.1) YAQ~D,Q~FE)=%4(D,E).
Note also that for any £™ measurable subset A of €

M(Q) x M(Q)> (D,E) — X4(D,E)

is a pseudometric on M ().

Whenever f is a function mapping a subset of a normed vector space into another
normed vector space, a is an interior point of the domain of f and f is Fréchet
differentiable at a we let

9f(a)

be the Fréchet differential of f at a.
If V is a vector space, v € V' and v belongs to the dual space of V' we frequently
write

< v, > instead of (v).

Whenever E C 2 we let 1, the indicator function of F, be the function on
Q which is 1 on £ and 0 on Q ~ E. We will often write “E” instead of “1g”; for
example, in what follows, we will often write “E € F(Q2)”, “E € BV(Q)”, “[E]”
and “||0[F]||” instead of “1g € F(Q)?, “l1g € BV(Q)”, “[1g]” and “||0[1£]||”,
respectively.

We let

X (Q)

be the vector space of smooth compactly supported vector fields on 2.
We use spt as an abbreviation for “support”; so, for example, if X € X(Q),

spt X =cl{z € Q: X(z) # 0}.
Whenever y, z € R we let
yVz=max{y,z}, welet yAz=min{y,z}

and we note that y +z=yVz+yA z.
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3. SECOND FUNDAMENTAL FORMS AND MEAN CURVATURE.

Suppose m € P, m < n and M is an embedded m dimensional submanifold of
class C? in R™.

The second fundamental form of M is the function IT on M whose value
at @ € M is a linear map from Nor(M,a) into the symmetric linear maps from
Tan(M, a) to itself characterized by the requirement that if U is an open subset of
R", a €e UNM; N : U — R™; N is of class C'; and N(z) € Nor(M,z) whenever
xr € UNM then

I(a)(N(a))(v) ®ew = IN(a)(v) ew for v,w € Tan(M,a)

The mean curvature vector of M is, by definition, the function on H on M
whose value at a point a of M is that member H(a) of Nor(M,a) such that

H(a) e u = traceIl(a)(u) whenever u € Nor(M,a);

in the classical literature the mean curvature vector is 1/m times H; hence the word
“mean”. It turns out the factor 1/m in is inconvenient when one is working, as we
will be, with the first variation of area and for this reason we omit it. The direction
of the mean curvature vector, and not just its magnitude, will be important in this
work.

The length of the second fundamental form of M is, by definition, the
function on M whose value at the point a of M equals

1/2
n—m m
D> M(a)(uy)(ui)l®
j=1 i=1
whenever uy, . .., u, is an orthonormal basis for R” such that uq, ..., u;, € Tan(M, a).

Suppose f : Q@ — R is C?; Vf(x) # 0 whenever x € Q; y is a point of the range
of f; and M = {f = y}. Let II be the second fundamental form of M and let H
be the mean curvature vector of M. It follows that if a € M then

IM(a)(Vf(a))(u) ev=0(Vf)(a)(u) ev whenever u,v € Tan(M, a).

For example, let © = R"™ ~ {0}, let f(z) = |z|/2 for x € ©, suppose 0 < R < 0o
and let M = {z € R" : |z| = R}. Then Vf(z) = z for x € Q. It follows that if

a € M then

II(a)(a)(v) ew = % whenever v, w € Tan(M, a),
a

H(a):#a

and the length TI(a) equals the square root of (n — 1)/R2.

4. SOME BASIC NOTIONS OF GEOMETRIC MEASURE THEORY.

4.1. Spaces of smooth functions and their duals. Suppose Y is a Banach
space. We let

EQY), £(QY), DY) D(QY)
be the space of smooth Y valued functions on €2 with the strong topology as de-
scribed in [FE, 4.1.1]; the space of continuous real valued linear functions on £(€2,Y)
with the weak topology as described in [FE, 4.1.1]; the space of compactly supported
members of £(€2,Y) with the strong topology as described in [FE, 4.1.1]; and the
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space of continuous real valued linear functions on D(£2,Y) with the weak topology
as described in [FE, 4.1.1], respectively.

We identify each member of T of £'(£2,Y) with its restriction to D(Q,Y) which
is a member of D'(Q,Y).

We let

£, &), D), D'(Q)
equal £(Q,R), &'(Q,R), D(2,R) and D'(Q2, R), respectively.
Thus

4.2. Currents. For each m € N we let
EMQ): En(Q: DMQ): D)

be £(Q,Y); £'(Q,Y); D(,Y); and D'(Q,Y), respectively, with Y = A" R™. Thus
D () is the space of m dimensional currents on  and &,,(Q?) is the space of
m dimensional currents with compact support on 2. We define the boundary
operator

0 : Dm(Q) = Dpr1(Q)
by setting 0T (w) = T'(dw) whenever T' € D,,(Q2) and w € D,,—1(Q); here d is

exterior differentiation.

We let
(4.2.1) V" eD(Q)
be such that V*(z) = E™ for x € Q.
Suppose T' € D,,, (). As in [FE, 4.1.5] we let
Tl

the total variation measure of T', be the largest Borel regular measure on
such that

[ITI(G) = sup{|T(w)| : w € D™(N), |lw|]| <1 and sptw C G}

for each open subset G of §2; here ||-|| is the comass which in case m € {0,1,n—1,n}
is the Euclidean norm; these are the only cases we will encounter in this paper. It
follows immediately from this definition that

(4.2.2) [|T)|(G) < liminf||S,||(G) for any open subset G of

whenever S is a sequence in D,,(€2) such that S, (w) — T(w) as v — oo whenever
w € D™(Q). We let

M(T) = |[T1[($2)
and call this nonnegative extended real number the mass of 7. We say T is

representable by integration if ||T'|| is a Radon measure which is equivalent to
the statement that ||T'||(K) < co whenever K is a compact subset of ). If this is the

case and T' is the ||T'|| measurable function with values in {{ € A, R : [|{|| =1}
defined in [FE, 4.1.7] there is a unique extension of 1" to the ||T|| summable functions
on Q with values in A" R", which we continue to denote by T', such that

ﬂm=/<?@wm>ﬂmm
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whenever w is a ||T'|| summable function on Q with values in A" R". If T € D,,,(Q)
is representable by integration and 7 is a bounded Borel function on 2 with values
in A'R", 1 € N and [ < m we let

TL’I] € ’Dm,l(Q)
be such that

TUn(w) = / < T(@), (nAw)@) > d||T]jz for w e D™I(Q).

4.3. Mapping currents. Whenever T' € D,,(2) and F' is a smooth map from {2
to the open subset I' of some Euclidean space whose restriction to the support of
T is proper we let

FyuT € D,y ()
be such that FyT(w) = T(F#w) for any w € D™(I'); here the pullback F7# is
as in [FE, 4.1.6]. If F carries Q diffeomorphically onto I', T is representable by
—
integration and T (x) is decomposable for ||T|| almost all 2 € Q we have

.
@sy e diTly = [w(F@) |\, 0F@T @) izl
for nonnegative Borel function w on I'.

4.4. Slicing. Suppose m,l € P, m > [, T is a locally flat m-dimensional current
in R™ as defined in [FE, 4.1.12] and f :  — R! is locally Lipschitzian. Note that
if both T and JT are representable by integration then T is locally flat; this will
always be the case when we apply slicing in this paper. For y € R! we follow [FE,
4.3.1] and define

<T fy>

the slice of T in f~![{y}] to be that member of D,, ;(Q) which, if it exists,
satisfies

- TLf#(B(y. 1) AVI](¥) m—1
<T fy>(@)= lrlfg £IB (. 1) whenever 1) € D" ~(Q)
where TL [f#(B!(y,r) A V!)] is defined as in [FE, 4.3.1]. Then, by [FE, 4.3.1],
< T, f,y > exists for £! almost all y and satisfies

(4.4.1) spt <T,f,y>C f'{y}] and I <T, f,y>=(-1)<aT, fy>.

Moreover, we have from [FE, 4.3.2] that
(142 [ow <7ty > )dcy = [T @A VW)
whenever ® is a bounded Borel function on R! and ¢ € D™~!(Q) and that

(4.4.3) /</v| <T fy> ||) dﬁly:/vdHTLf#Vlm

whenever v is a nonnegative Borel function on €.
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Of particular interest to us will be the case when [ = 1. Suppose u : 2 — R
is locally Lipschitzian and both T" and 0T are representable by integration. From
[FE, 4.2.1] and [FE, 4.3.4] we obtain

<T,u,r>=OT)L{u>r}—-90(TL{u>r}
=0(TL{u<r}) —(0T)L{u<r}
=0T L{u<r})—(OT){u<r}
=@T)L{u>r})— (0TL{u>r}
for £ almost all r. If now S € D,,(Q) and both S and 9S are representable by
integration we infer from (4.4.4) that
OSL{u<r}+TL{u>r})
=<S—T,u,r>+00S)L{u<r}+ (0T)_{u>r}
for £ almost all r. It follows that

(4.4.4)

(4.4.5)

b
(4.4.6) / 10(SL{u <7} + TL{u>r}) - 08||({u < r})dL'r
< Lip(ul[{a < u < b})||S = T||({a < u < b})

whenever —oo < a < b < 0.
4.5. The current corresponding to a locally summable function.
Definition 4.5.1. Whenever f € LI¢(Q) we let

[f] € Dn(9)
be defined by

[fl(eV") = /Q¢f dL™  whenever ¢ € D(Q).

Suppose f € L{OC(Q). For any X € X(Q2) we have

(4.5.1) d(X V™) =divX
so that
(4.5.2) I UX IV™) = /fdideﬁ".

It follows that
(4.5.3) 1O[f]I(B) = TV(f,B) whenever B is a Borel subset of .

Thus, in the terminology of [FE, 4.1.7], it follows from [FE, 4.5.9] that {[f]: f €
BV(Q)} is the vector space of n dimensional normal currents in Q and {[f]: f €

BVZOC(Q)} is the vector space of locally normal n dimensional currents in €.
For any f € L{OC(Q) and any y € R we have

{f 2y +[{f <y}l =9
Thus if £, g € LC(Q) we have

(4.5.4) Hfzy-Hozyt=Ho <y} - [{f <y}
Also, if f,g € LI°¢(Q) and y € R then
(4.5.5)  spt[{f >y} —[{g >y} =sptl{g <y} — [{f <y} Cspt[f—gl|
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Finally, if E is a Lebesgue measurable subset of 2 we have [E]+[Q2 ~ E] = [2] and
0[] =0 so

(4.5.6) o[ ~ E] = —0[E].
4.6. A mapping formula.

Theorem 4.6.1. Suppose I' is an open subset of R"; f € L{OC(Q); F:Q—-T
is locally Lipschitzian; the restriction of F to the support of [f] is proper; A is
the set of y € T’ such that F~1[{y}] is finite and such that if F(z) = y then F is
differentiable at x; and g : T' — R is such that

_ EIEF—I[{y}] f(z)sgndetOF (z) ifye€ A,
9(y) =
0 else;

Then g € LI°(T") and

(4.6.1) Fyulf] = lg]-
In particular, if F' is univalent and det OF (z) > 0 for L™ almost all x € Q then

Fylfl=[foF7'].
Proof. See [FE, 4.1.25]. O

4.7. Densities and density ratios. Suppose p is a measure on {2, m € N and
a(m)=L"{z e R™: |z| < 1}).
For each a € Q) we set

n(B(a,r))

0", a,m) = a(m)rm

whenever 0 < r < dist (a, R" ~ Q)

and we set
0" (u,a) = liH(l) 0™ (u,a,r)
rT—

provided this limit exists.

4.8. Sets of finite perimeter. Suppose F has locally finite perimeter which

means, by definition, that E € BVZOC(Q). Proceeding as in [FE, 4.5.5], we say
u € 8”1 is an exterior normal to E at b € Q if

O"{rxeFE:(x—beu>0tU{zeQ~FE:(x—b)eu<0},b) =0
We let
ng
be the set of (b,u) € Q x ({0} US™ 1) such that either u is an exterior normal to F
at b or u = 0 and there is no exterior normal to F at b; note that ng is a function
with domain Q. We let
b(E),

the reduced boundary of E, equal to the set of points b € Q such that ng(b) €
Ssn—t
Theorem 4.8.1. Suppose E is a subset of Q0 with locally finite perimeter. The
following statement hold:

(i) b(E) is a Borel set which is is countably (H"~,n — 1) rectifiable;

(i) [JO[E]]| = H" 'L b(E);
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(iii) for H"! almost all b € b(E) we have
T n—1
snp(b) = O[E](b) and O"([[O[E]||,b) =

here * is the Hodge star operator as defined in [FE 1.7.8].

(iv) for H"~1 almost all b € Q ~ b(E), O" 1(||9[E]||,b) = 0 and
either ©" (LML E,b) =0 or O"(L"L (2 ~ E),b) =
Proof. See [FE, 4.5.6]. O

It follows that

(4.8.1) IE](X JV™) = /XonE d|[O[E]|| whenever X € X(€).

Theorem 4.8.2. Suppose E € M(R"™) and C is a closed convexr subset of R™.
Then
M(9[C N E]) < M(I[E)).

Proof. We may assume that F has finite perimeter since otherwise the Theorem
holds trivially. Whenever 0 < r < oo we let E, = ENU™(0,r).

Suppose 0 < r < oo. Let p : R" — C be such that |z — p(x)| = dist (x, C) for
x € R™. Since spt [E,| is compact we infer from Theorem 4.6.1 that

[CNE,] = pylEr]
so that, as Lipp < 1,
M(9IC 1 E,]) < M(I[E,])
with equality only if [E] = [C' N E].
It follows from (4.4.6) that

S
/ M([E,] — O[E })d£1r</R OE][|(R™ ~ U™ 0, 7)) dLr
+ LB (U0, S) ~ U0, R))

whenever 0 < R < S < co. Thus there is a sequence s in (0, 00) with limit co such
that
lim M(J[E] — J[Es,]) = 0.

V—00

From (4.2.2) we infer that
M(O[E N C)) < liminf M(9[E;s, N C]) < liminf M(9[E,,]) = M(9[E]).

V—00 V—00

O

4.9. Basic facts about functions of bounded variation. Suppose f € BVZOC(Q);
then

(4.9.1) Ifl(w) = /3[{f > y}(w)dL'y  whenever w € D"1(Q)
and
(4.9.2) |mmnzjﬂmwzymwﬂy

See, for example, [FE, 4.5.9(13)]. These formulae are absolutely fundamental for
this work.
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We endow L{°¢(Q) with the topology induced by the seminorms

L) s = [ iflac

corresponding to compact subsets K of 2.
The following two well known theorems may be proved using regularization.

Theorem 4.9.1 (Approximation Theorem). Suppose f € L{OC(Q). Then f €
BVZOC(Q) if and only if there is a sequence g in E(SY) such that

(i) g, — f in L{OC(Q) as v — oo;

(ii) [10[gy ]| — 1OLf]l| weakly as v — oco.

Theorem 4.9.2 (Compactness Theorem). Suppose C' is a sequence of nonnegative
real numbers and K is a sequence of compact subsets of such that USZ K, = (1.
Then

oo

loc . n
ﬂ{fer @: [ inac +|I8[f]I(KV)§CV}

v=0

is a compact subset of L{OC(Q).

Theorem 4.9.3. Suppose f € BVZOC(Q) andy € R. Then fAy, fVy € BVlOC(Q)
and

(4.9.3) 101 Ayl +1100f v ylll = (1B A]Il-

Proof. Tt is trivial that the right hand side of (4.9.3) does not exceed the left hand
side of (4.9.3).

We consider only the case f > 0 and leave to the reader the straightforward
extension of our argument to the general case. One readily shows that

[ Al(w) = / 2 @) ey amd [f V() = / U 2 )ty
whenever w € D™(2). Applying 0 one infers
||8[fAyHS/Oylla[{ny}]lldﬁly and IIO[nyHIS/m\la[{ny}Hldﬁly-

By (4.9.1) the sum of the right hand sides of these inequalities is ||O[f]||. Thus the
left hand side of (4.9.3) does not exceed the right hand side. O

4.10. “Layer cake” formulae. These elementary formulae will be very useful in
this work.

Proposition 4.10.1. Suppose f,g and ¢ are real valued Lebesgue measurable func-
tions on  and ¢ > 0. Then

4.10.1 #lg— f)dL™ = - pdL™ | dLty.
( ) /{f<9} v ) [w </{g>y}~{f>y} ) !
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Proof. From Tonelli’s Theorem we infer that

— Aden = dct | dcn
/{f<g} o =) ~/{f<g} o) </[f(ﬂv)7g(l)) ) ’

pd(L™ x L)

~/{(w7y)€QXR:f(w)<y§g(w)}
-/ ( / M.cn) iy,
—oo {92y}~{f>y}

Chan and Esedoglu in [CE] call the following elementary formula the “layer cake”
formula; it is indispensable in this work.

O

Corollary 4.10.1. Suppose f,g are real valued Lebesgue measurable functions on
Q. Then

(4.10.2) /Qlf —gldL" = /OO So{f =2yl {g >y})dl'y.

— 00

Proof. Let ¢(x) = 1 for x € Q. Applying the preceding Proposition twice we obtain

| w-na= [ odezn~ sz upacty
{f<g} —00
and -
| g = [ oqrze~ oz picy
{9<f} —o0
Now add. O
4.11. The class G(2). Let

p:OxXxR—Q and ¢:QxR—-R

carry (z,y) € Q X R to « and y, respectively.
Whenever G is an £ x £ measurable subset of  x R we let

[G] € Dpy1(2 x R)
be as in 4.2.1 with V" there replaced by (p” V") A dg; that is,

[G)(W(p* V™) Adq) = /Gq/)d(ﬁn x L) whenever ¢ € D(Q x R).

Whenever G C 2 x R we let
GT=(2x[0,00))NG and welet G~ = (Q x (—00,0)) ~G.
Proposition 4.11.1. Suppose G is an L™ x L' measurable subset of 2 x R. Then
[G] = [GT] = [G7]+[2 x (—00,0)].
Proof. We have
[G] =[GN(Q x[0,00))] + [GN(Q X (—00,0))]
and
[ % (—00,0)] = [GN (2 x (—00,0))] + [( X (—00,0)) ~ G].

(_
Since G N (2 x [0,00)) = Gt and (Q x (—00,0)) ~ G = G~ the Proposition
follows. g
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Definition 4.11.1. We let
g(Q)
be the family of Lebesgue measurable subsets G of 2 x R such that
(L™ x LYGTUGT) < o0
and
qlspt [GT] Uspt [G]] is compact.

Note that if G € G() then for £! almost all y we have
{:(2,y) €GT}EeM(Q) and {z:(z,y) € G~} € M(Q).
Definition 4.11.2. Whenever G € G(Q2) we let
G QR
be such that
Gla)=L'({y: (z,y) € GTY) L' {y: (x,y) €GTY)

if both {y : (z,y) € GT} and {y : (z,y) € G~} belong to M(R) and such that
G (x) = 0 otherwise.

Note that G+ € F(Q) and (£ x L})(G) = [, |G| dL™.
Definition 4.11.3. Whenever f : Q@ — R we let
fT={(z,y) e QxR f(z) >y}
Suppose f: Q — R. Evidently,
feF() < fleg().
Fubini’s Theorem implies that
(/)] =[f] whenever f € F(Q).
Proposition 4.11.2. Suppose G € G(2), ¢ € D(Q) and ¥ € E(QY). Then
Py (DG — [G)L T 0 q) (4V?)
= (=D)™(GT] = [G7]) (p" (6V™) A (¥ 0 g)dq)

= (—1)"/ o(z) (/ v dct —/ v’ d/:1> dL"z.
Q {y:(z,y)eG} {w:(2y)eG~}

Proof. The first equation follows from the fact that
d((¥ o q) Ap*(6V™)) = (V' 0 q)dg Ap* (¢V")

and the second follows from Fubini’s Theorem. O

(4.11.1)

Proposition 4.11.3. Suppose G € G(2). Then
[GY] = (=1)"pg (QIGT] - [G7])La)

and

9G] = (=1)""px(A(G*] - [GT]) L dg).

Proof. Letting ¥(y) = y for y € R in the preceding Proposition we deduce the first
equation; the second equation is an immediate consequence of the first. ([
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Corollary 4.11.1. Suppose G € G(?). Then p|spt 0|G] is proper and
9[GH = (=1)"* 'y (0(|G)) L dg).

Proof. Since spt 9[Q x (—oo] = Q and since (9[Q2 x (—oo])Ldg = 0 the Corollary
follows immediately from Proposition 4.11.1 and the preceding Proposition. (I

Proposition 4.11.4. Suppose G € G() and J[G] is representable by integration.
Then

106111B) < [ l191{x s (0.9) € GH(B) Ly
for any Borel subset B of Q.

Proof. Suppose U is an open subset of Q, w € D"~1(Q), sptw C U and |w| < 1.
For each y € R let iy(z) = (x,y) for € Q. From [FE, 4.3.8] we have

<[Gl, ¢,y >=iy,[{z: (z,y) € G}] for L' almost all y.
From Corollary 4.11.1, (4.4.2) and (4.4.1) we find that
(—1)"19[GH](w)| = (9G] L dg)(p*w)

_ / < 0[G), gy > (PFw) dLly
__ / Olfx : (z,y) € GY(w) dLly

< / 10 : (z,y) € GYI|(U) L1y

from which the inequality to be proved immediately follows. ([l
We will find the following elementary Proposition to be useful.

Proposition 4.11.5. Suppose G € G(Q). The following statements are equivalent.
(i) For L£? almost all (y,z) € R? such that y < z we have

L'{z: (x,2) € G and (z,y) € G}) = 0.
(ii) For L™ almost all x € Q we have
L2{(y,2) ER*:y < 2, (x,2) €G and (z,y) € G}) = 0.

(iil) [{G' >y} = {z: (x,y) € G}] for L' almost all y;
(iv) {y: (z,y) € G} =[{y: —o0o <y < G1(x)}] for L™ almost all x € .
(v) 1G] = [(GY].
Proof. (i) and (ii) are equivalent by Tonelli’s Theorem. Since
(GYH! = {(z,y) : G (x) = y}
we find that (iii), (iv) and (v) are equivalent by Tonelli’s Theorem.
Suppose (iii) holds. Since {G' > 2z} C {G' > y} whenever (y,2) € R? and y < z
we find that (i) holds.
Suppose (ii) holds. By Tonelli’s Theorem for £ x £! almost all (z,2) € G we
have
(z,y) € G for L™ almost all y € (—o0, 2).
Moreover, since (L™ x £1)(GT UG™) < oo we infer from Tonelli’s Theorem that

LYG N ({z} xR)) >0 for £L* almost all z € .
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Thus there is f : £ — R such that
{y: (z,y) € G} = (—o0, f(z)) for L™ almost all z € Q.
It follows that G'(x) = f(z) for L™ almost all 2 € Q so (iv) holds. O

4.12. Deformations and variations.

Definition 4.12.1. We let
V(Q)
be the set of ordered triples (I, h, K) such that

(i) I is an open interval and 0 € I;
(i) h:IxQ—Q and h is smooth;
(iii) h(0,z) =z for x € Q;

(iv) Q3 x— h(t,x) carries Q diffeomorphically onto itself for each t € I;
(v) K=cl{z € Q:h(t,z) #x for somet € I} is a compact subset of .

Whenever (I,h, K) € V() and (t,z) € I x  we let
(o) = ht.2), o) = heo), o) = () z)
t\T) = y L), tx_dt y L), t\T) = dt y L)
Note that if X € X(Q) and h(t,z) = 4+t X (z) for (t,2) € RxQ it is elementary
that there exists an I and K such that (I, h|(I x Q),K) € V(Q).

Theorem 4.12.1. Suppose

(i) (I,h, K) € V(Q);
(ii) D is a subset of Q with locally finite perimeter and finite Lebesgue measure
and

E; ={hi(x) :x € D} wheneverteI.
(iii) A(t) = ||O[E]||(K) for each t € I.
Then A is smooth,

A(0) = / Ay d|[0[D]]| and A(0) = / Ay d||o[D]||

where, for each x € b(D),

P(z) is orthogonal projection on {v € R" : venp(x) =0};

(4.12.1)
ay(z) = P(x) 0 dhgo(x) o P(x),
as(z) = P(z)* 0 8hg(z) o P(x),
as(z) = P(x) 0 dho(x) o P(x),
Aq(z) = traceas (z),
Ay (x) = (trace ay (x))? + trace(as(x)* 0 as(z) — a1 () o ai(x)) + trace az(x).

Proof. It follows from (4.6.1) that [E}] = h;4[D] and therefore 9[E;] = h;40[D] for
any t € I. It follows from (4.3.1) that

om0 = [ 4|, o) en(a| djoipie
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for any ¢t € I. That

= A1 (.13)

t=0

(4) I orteromoton]], = 2t

are elementary calculations which may be found in [FE, 5.1.8]. O

% ‘/\7171 Ohy(z)(*np(z))

Proposition 4.12.1. Suppose

(i) (I,h, K) € V(Q)
(ii) D is a subset of Q with locally finite perimeter and

E, ={hi(x) :x € D} whenevert e I;
(ili) ¢ € D(Q).

Then
([Ee] = [DD) (V™) —/ (/qﬁ (z)d||8]D ]||x> dcir

where, for each t € I, we have set
Wi (x) =< hy(z /\ Ohi(z)(*np(z)),E > forz € b(D).

Proof. For each t € I let J; = [0,t] € D1(R) as in [FE, 4.1.8]. From [FE, 4.1.8]
we have ||J; x O[D]|| = ||J¢]| x ||O[D]|] for each t € I. From [FE, 4.1.8] and (iii) of
Theorem 4.8.1 we have

J, % O[D|(7, ) = (1,0) A J[D](z) = (1,0) A *np(z)
whenever (7,2) € (0,t) x b(D).
Suppose t € I. We obtain
[Ei] — [D] = hi[D] = [D] = hy(J; x 9[D])
from the homotopy formula of [FE, 4.1.9]; thus
([Ed] = [D])(6V™)
= (/i x O[D])((¢ o WRFV™)

/ (f ottrte) @) djoiDle) ac,

as desired. O

Theorem 4.12.2. Suppose

(i) (I,h, K) € V(Q);
(ii) D is a subset of Q with locally finite perimeter and finite Lebesque measure
and

E; ={h(x):x € D} whenevert e I.

(iff) ¢ € Lo (Q);
(iv) B(t) = [, CAL™ whenevert € 1.
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If ¢ is continuous then B is continuously differentiable and

(4.12.2) BO) = [ ¢l #np) doD]|.
If ¢ is continuously differentiable then B is twice continuously differentiable and
(4.12.3) B(0) = [ (6b+ (V¢ h)ha) @ ) dljo[D]|
where, with P, a1,as as in Theorem 4.12.1, we have set
(4.12.4) b(z) = ho(z) + trace a (x)ho(z) — ag(z)(ho(z)) for x € b(D).

Proof. Let us assume for the moment that ¢ is smooth. From Proposition 4.12.1
we infer that

B(t) = / ([ ctntanw @alorlie) acts

where we have set
&i(x) = /\n_1 Ohy(z)(xnp(x)) and Wi(x) =< he(x) A&(z), E >

for each ¢,z) € I x b(D).
Suppose z € b(D). Let uy,...,u, be be an orthonormal sequence of vectors in
R™ such that np(z) = uy and *u, = ug A - -+ A up; this implies
<wAus A ANup, E" >=wewu; <uy Axu, E" >=wewu; for any we R"”
and
&(z) = /\ ) Ohi(x)(ug A -+ Au,) whenever t € I
n—

see [FE, 1.7.8] for the properties of .

It should now be clear that (4.12.2) holds in case ¢ is smooth.

Let u',...,u"™ be the sequence of covectors dual to uq,...,u,. For each i €
{2,...,n} let v; = P(x)(dho(x)(u;)) and let ¢; =< dho(x)(u;),u' >. We have

ho(z) A iet<x>|t_0
/\Z@ho (u' J&o(x))

YA ZUZ u' 1€o(z)) + ho(z) A Zciul A (u' & (2))

=2

= (ho(x) o Uy (Z v; ® uz> -, (ho(x) ° uz)cz> uy A &o(x)

- (trace ar (2)ho(2) @ ur — as (x)(ho(x))) ur A &o(x)
and
ho(l‘) N fo(af) = (ho(l‘) [ ] ul)ul N fo(l‘)
It follows that

& @)We@)] g = (V¢() @ ho)ho(a) + C()b(a)) o

and we may conclude that (4.12.3) holds in case ( is smooth.
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To prove the Theorem holds in full generality we need only approximate { by
smooth functions. (I
5. THE SPACES B, (2) AND Cx(2), 0 < A < o0.

We suppose throughout this section that
0< A< 0.

The spaces By () and C»(£2), which we now define, will be indispensable in this
work.

5.1. The definitions.
Definition 5.1.1. Whenever f € L{OC(Q) and K is a compact subset of Q we let
c(f, K)
be the set of g € LIO¢(Q) such that
L' # 9N (@~ K)) =0

and
ess inf f < g(z) <ess supf for L™ almost all x € ().

Bi(2)
be the set of those f € BVZOC(Q) such that for each compact subset K of Q0 we have

OLAIII(E) < [[0[g]]|(K) +/Q|f —gldL"  whenever g € c(f, K).
Definition 5.1.2. We let
CA(2)

be the set of those subsets D of € with locally finite perimeter such that such that
for each compact subset K we have

1O[D[|(K) < [[O[E]||(K) + AZa(D, E)

whenever E € M(Q) and
Sox (D, E) = 0.

Note that Xg.x (D, E) =0 if and only if 15 € ¢(D, K).

5.2. Basic theory of B,(€2) and C»(€2), 0 < XA < co. As a consequence of (4.9.1)
and (4.10.2) we find that

(5.2.1) (8g][|(K)+ /2 f—g| = / T 10Hg = WIE)+Sa({f > v {g > v}) dLly

whenever f,g € BVZOC(Q) and K is a compact subset of €.
Proposition 5.2.1. Suppose D C Q). Then
De C)\(Q) S OQ~D€ CA(Q)

Proof. This follows easily from (2.0.1) and (4.5.6); we leave the details to the reader.
O

The relationship between B (£2) and C» (1) is as follows.
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Theorem 5.2.1.
C,\(Q) = {E :ECQandlg e B)\(Q)}

Proof. Suppose E is a subset of Q with locally finite perimeter. It is trivial that
E € C\(Q) if 15 € BA(2). So suppose E € CA(2), K is a compact subset of Q and
spt[lg — g] € K. From (4.5.5) we find that, whenever 0 < y < 1, ¥x(F,{g >
y}) =0so

HOLE]| < 119l{g = y}II(K) + AZa(E,{g = y}).
It follows from (4.9.1) and (4.10.2) that

ot = [ sl acy

< / 101{g = WII(K) + ASa(E, {g > y}) dCly

< 110141 (%) +A/Q|1E gl dcn

The following Theorem is an elementary corollary of 5.3.1.

Theorem 5.2.2. Suppose D is an open subset of Q0 with smooth boundary. If
D € C\(Q) then
[H| <A

where H is the mean curvature vector of bdry D.

The converse of this statement is false as one sees in case A = 0 by considering

unstable minimal surfaces.
A good deal of what follows uses the ideas of [BDG].

Theorem 5.2.3. Suppose A € [0,00), f € BA(2) and y € R. Then
{f+uuf. fry. fvyl CBA(Q).

Proof. Suppose g € BVZOC(Q), K is a compact subset of Q and g € c(f + y, K).
Then g —y € BVZOC(Q) Nc(f,K) so
OLf + Il () = [[O[f1II(K)

<11olo = 1K)+ [ 17 = (g =l de”

:Ha[gm(K)+A/K|<f+y>—g>\d£”

so f+y € BA(Q2).

It is trivial that 0f = 0 € B ().

Suppose g € BVlOC(Q), K is a compact subset of Q and g € ¢(—f, K). Then
—g € BVZOC(Q) Nc(f, K) and and spt [f — (—g)] C K so

161~ £111(E) = 11111 (6)
< lo[-gllI(K +A/ f — (~g)| dL

= ol K) + A [ (=) =) ac”
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so —f € BA ().
Suppose y > 0, g € BVZOC(Q) K is a compact subset of 2 and g € c(yf, K).
Then g/y € BVYC(Q) N e(f, K) and spt [f — (9/y)] C K so

1l A1) = ylIaL ()
<y (m[g/ym(m aaf - <g/y>|dﬁ“)

:||a[g]\|<K>+A/K|<yf>—g)\dm

so yf € BA(Q).
If y < 0 we have

yf = (=y)(=f) € BA(Q)
by the results of the preceding two paragraphs,
If y < ess inf f then [fAy] = [y] and y € BA(Q) so fAy € BA(R2). Ifess sup f <
y then [f Ay] =[f] € BA(K) so f Ay € Bx(2). So let us assume that

ess inf f <y < ess sup f.

Suppose g € BVZOC(Q), K is a compact subset of Q and g € c(f Ay, K) Let
h=g+(fVy)—y. For L™ almost z € {f <y} we have h(x) = g(z) so

ess inff =ess inf f Ay < g(z) = h(zx)
and
h(z) = g(x) <ess sup f Ay < ess sup f.
For £™ almost = € {f > y} we have h(z) = g(z) + f(z) —y so
essinff =essinff Ay+essinff—y <g(x)+ f(x) —y=h(x)
and
h(z) <esssupfAy+ f(z)—y= f(z) < ess sup f.
Moreover,
f=h=Uny+fVvy-y)—@+fVy-y)=Ffry—g
It follows that h € c(f, K) so
HOLf Ayl (K) + [[Of V y]lI(K)
= [O[f]II(K)

sua[h]\|<K>+A/K|f_h|dm
SH@[Q]H(KH'||8[f\/y—ym(K)+/\/K|f—h|d[:"

< [10lg][[(K) + [10Lf v yl|(K) +A/K [f Ny —gldL”

Thus f Ay € Byr().
Finally,

fVvy=—=(=f)A(=y)) € BA().
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Lemma 5.2.1. Suppose A € [0,00) and f € BA(Q), g € BVlOC(Q)’
ess inf f < g < ess sup f,

K is a compact subset of Q, u(x) = dist (z, K) forx € 2,0 < h < 00 and {u < h}
is a compact subset of Q. Then

o) < ol <y + (3 3) [ 17 =gl

In particular, if ess inf f < y < ess sup [ then

1 n
lotue < (ve g ) [ ir-slacn
Proof. For each r € (0,h) let h, = gliy<py+ fliusry. Then spt [f—h.] C {u <7},
f—=h.= (.f - g)l{ugr} and, by (445)7
oA ]Il ({u < v}) <[] < [g] = [f],u,r > [|({u < r}) + [[0g]]|({u < 7})

Ol (fu < r})
< [olhl|({u <7}) + A e }If—hrl
<|I <lgl = [fl,u,r > |[({u < r}) + [[0lg]l[({u < 7}) +>\/{ o |f —glac™.

Now integrate from 0 to h and make use of (4.4.6) to obtain the first inequality to
be proved; to obtain the second set g(x) = y for x € Q. O

Theorem 5.2.4. Suppose A € [0,00), f is a sequence in By(S), F € LI°C(Q) and
f, — F in LI¢(Q). Then F € B\(Q) and

AL — NOLFN]| weakly as v — oo.
Proof. Let K be a compact subset of Q, let u(z) = dist (z, K) for € Q and let R
be the supremum of those r € (0, 00) such that {u < r} is a compact subset of .

Suppose F' = 0. Let h € (0, R). For each v € P let y, be the average of f, on
{u < h}. Then
1

L) £ Ot ) [ 1f—udde” =0 s oo

Owing to the arbitrariness of K we find that ||0[f,]|| tends weakly to zero so that
the Theorem holds in this case.
Suppose F' # 0. Then

(5.2.2) limsupess inf f, < ess infF' < ess sup F' < liminf ess sup f,.

v—00 v—0o0

For any open subset U of Q2 we have from 4.2.2 that
(5.2.3) 1OTFIII©) < timin 197,110
For each m, M such that
ess infFF <m < M < ess sup F
we choose a N(m, M) € P such that
(5.2.4) essinff, <m and M <esssupf, providedv> N(m,M);
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it follows that
ess inf f, < F,, »y < ess sup f, whenever v > N(m, M).

where we have set Fp, oy = (F'A M)V m. For any r € (0, R) we infer from (5.2.4)
and 5.2.1 that

L) < Wo(Fwal( <+ (A7) [ 17— Frlac”

1
—>||6[Fm,M||({u§T’})+ (/\+h>/ |F*Fm7M|.
{u<h}

Letting m | ess inf F' and M 7 ess sup F, using (4.9.1) and letting r | 0 we find
that

limsup [|8[£,][|(K) < [|O[F][|(K).
In view of (4.2.2) we find that
(5.25) 1011, )11 — 1IDIF]]| weakly as v — o,

We now show that F' € Bx(2). To this end, let G € BVZOC(Q) Nc(F, K).
Suppose ess infF' < m < M < ess inf I’ and let G, ;s = (G A M) V m. For each
v € P not less than N(m, M) and each p € (0, R) let

Gu,p = CTVm,ML{U < ,0} + fVL{U > ,0}.
Since g,,, € c(fy,{u < p}) and since f, — g, , = (fu — Gm,m)1{u<py We infer that

10U 11 ({1 < p}) < 118lgwoll (L < p}) + A /{ V= Guulac”

Suppose 0 < r < s < R. Keeping in mind that Gy, vy — fu = Finm — fo on
Q ~ I we use (4.4.6) to obtain

/ 110lgul({u < p}) dC'p

<[ ARwar = gdden s [ folGm i < p}) dc.
{r<u<s} r
It follows that

(s=nllolflu < ) < [ 108w < o} ac’s
/{<<}|FmM ful dL™ + (s = r)[|0]Gm, M| ({u < s})

s — r)/ o = Goona| AL
{u<s}
Letting m | ess infF' and M 1 ess sup F' and then letting v — oo we find that

limsup [[0[f, ][|({u < r}) <[|O[G]||({u < s}) + A/{ - |F'— GldL".

V—00

Owing to the arbitrariness of r, s we infer from (5.2.5) that

1O[G]I[(K) < \IG[FHI(KH/\/KIF*GIdC",
as desired. [l
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Theorem 5.2.5. Suppose £ is a nonempty nested subfamily of Cx(Q2). Then UE
and NE belong the Cx ().

Proof. Let D be a nondecreasing sequence in £ such that
Yr(UE, U2 D,y) =0

whenever K is a compact subset of €. From Theorem 5.2.1 we infer that 1p, €
BA(§2) for v € P. From the preceding Theorem we infer that 1 ¢ € B5(£2). From
(the trivial part of) Theorem 5.2.1 we infer that UE € Cy(Q).

To show that NE € C,(2) on chooses a nonincreasing sequence D in & such that

Yx(NE,N21D,) =0
and proceeds as in the preceding paragraph. ([l
Theorem 5.2.6. Suppose f € BA(Q) and y € R. Then
{f <yt {f<uh, {f >y} {f 2y} €CAQ).

Proof. For each v € P let
1
gv =V (f_y>/\; VO

and note that, in view of the foregoing,
gy € BA(Q).
One readily verifies that
g 1 1{f>y} as v | oo
so that, by the Theorem 5.2.4,
1{f>y} € Ba(Q).

Since {f > y} = N.<y{f > 2} we infer from the preceding Theorem that {f >
y} € BA(R2). The remaining statements to be proved now follow from Proposition
5.2.1. ([

Theorem 5.2.7. Suppose f € BVZOC(Q) and D is a dense set in R such that at
least one of

{(f>ut, {Fzuh {f<yh {f<y}
belongs to Cx(2) whenever y € D. Then

e Ba().
Proof. Let
A={zeR:{f>2}€C\(Q)} andlet B={zeR:{f >z} €Cr(Q)}.
It follows from Proposition 5.2.1 that A U B is dense in R. Suppose y € R. Then

fzy}= (ﬂzeA, 2<y {f> Z}) U (mzeB, 2<y {f> y})
It follows from Theorem 5.2.5 that {f > y} € Cx(Q).
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Suppose K is a compact subset of 2 and g € BVZOC(Q) Ne(f, K). Keeping mind
(4.5.5) we infer from (4.9.1) and (4.10.2) to that

1OLAIII(EK) = /_Oo 10 (s 1K) ALy

S[ (”a[l{gzy}H(K)Jr)\/1{f2y} 1{g2y}|dﬁn> dﬁly
= \Ié’[g]ll(K)+A/|f—g\d,cn.

5.3. Generalized mean curvature.

Theorem 5.3.1. Suppose A € [0,00), D € CA(2) and X € X(Q2). Then

/traceP(:z:) 0 X (z) o P(z) d||d[D]||z < )\/ 1X| d||o[D]||

where, for each x € b(D), we have let P(x) be orthogonal projection of R™ onto
{veR":venp(z) =0}

Remark 5.3.1. We restate this Theorem in the language of [AW1]. Let V be the
n — 1 dimensional varifold in Q naturally associated to O[D]; that is,

V(B)=H"'({x €b(D): (v,{v € R" :venp(z) =0} € B})

whenever B is a Borel subset of the product of Q with the Grassmann manifold of
n — 1 dimensional linear subspaces of R™. Then the preceding Theorem amounts to
saying that

5V (X)| < /\/ X[ d||V|| whenever X € X(Q).
Thus, if §V is as in [AW1, 4.2],
V]| < A[[V].
0V could reasonably be called the generalized mean curvature of V.

Proof. Let K = spt X and let h, I be such that (I,h, K) € V(Q) and hy = X. For
each t € I let By = {hi(x) : * € D} and let A(t) = ||0[F:]||(K). Then for any
positive t € I we infer from Proposition 4.12.1 that

A(t) — A(0) < A/ g, — 1p|dL"
= ||[E:] — [D]II(K)

/ ([ 1xl10- @) il ) acts.

To complete the proof we let ¢ | 0 and invoke Theorem 4.12.1. (]
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5.4. Monotonicity.

Theorem 5.4.1 (The Monotonicity Theorem). Suppose A € [0,00) and D € C(£2).
Then
e (10[D]l], a.7)

is nondecreasing as a function of r € (0,dist (a,R™ ~ Q)) for each a € Q. More-
over,

e~ 1(||9[D]|], a)
erists for each a € 0 and depends uppersemicontinuously on a. Finally,
0" (||9[D]||,a) > 1 whenever a € spt I[D].

Proof. In view of Corollary 5.2.1,5.3.1 and (4.8.1)(iii) this follows from [AW1, 5.1].
(I

Corollary 5.4.1. Suppose 0 < XA < oo, D € Cx(2) and a € spt I[D]. Then
e Ma(n —1)r"~ < ||9[D][|(U(a, 7))

e_mwrn <A+ ML (DN U (a,r))

whenever 0 < r < dist (a, R™ ~ Q). Moreover, if & = R"™ and L™(D) < oo then
spt [D] is compact.

Proof. The first inequality to be proved follows directly from the Monotonicity
Theorem.

Suppose 0 < r < dist (a,R™ ~ Q). For each p € (0,r) let E, = DN {u > p}
where we have set u(z) = |z — a| for x € . Whenever 0 < p < r we have

HOLE]I| = [[OD][[L{u > p} +[[ < D, u,p > ||
so that, by the Monotonicity Theorem, (4.4) and (4.10.2),
e Ma(n —1)p" ! < e Ma(n —1)p" 1
< [[O[D]|({u < p})
<IOBG < o))+ [ 10 =15,
=M(< D,u,p>)+ A" (D NB"(a,p)).
Now integrate this inequality over (0,7) and make use of (4.4.6). O

Corollary 5.4.2. Suppose
0O<R<oo, 0<r<oo, a€Q and R+r <dist(a,R"~Q);

I € BA(%2);
and
Y ={y e R:||o{f = y}]l[(U"(a, R)) > 0}
Then
LYY)e M a(n —1)r" "t < J9[f]||(U"(a, R+ 7))
and

£ y)e = gy /\r)/ \f|dCm.
Un(a,R+r)

n

Proof. For each y € Y ~ {0} we apply the preceding Corollary with D there equal
to {f =2 y}. O
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5.5. The Regularity Theorem for C)(12).
Definition 5.5.1. Whenever

a€eR" O0<r<oo, 0<pu<l, 0<f8<

we let
R(a? r? /’l’7 ﬂ)

be the family of closed subsets S of R™ such that there are
v, U g

with the following properties:

(i) U is an orientation preserving isometry from R™ onto R" ! xR and ¥(a) =

(0,0);
(i) g : U 1(0,r) — UY0,7), g(0) = 0, g is continuously differentiable and
9g(0) = 0;

(iii) |0g(u) — dg(v)| < B (@)# whenever u,v € U""1(0,7);
(iv) ¥[SIN(U™1(0,r)xUY0,7)) = {(u,v) € U"10,r)x U 0,r) : v < g(u)}.
Remark 5.5.1. If h€ R", 0 < n < oo and L is a linear isometry of R™ then
S eR(a,r, 1, 8) & {Lin(x+h):xeS}teR(Lnla+h),nr pmpb).
Theorem 5.5.1 (Regularity Theorem for Cy(2)). Suppose
O<pu<l and 0<f < oo.
There exists 0 € (0,1/2/2) such that if
0<A<oo; O0<R<oo; ARZLO; r=0R;
E e€Cy\(QY) S =spt[E];
a€bdryS and U"(a,R) CQ
then
[E]=1S] and S e€R(a,rpf).
Remark 5.5.2. In case n = 2 the Regularity Theorem also holds with p = 1.

The Regularity Theorem will be proved by systematic applying the ideas of the
regularity theory in the context of geometric measure theory for surfaces of which
nearly minimize area.

In view of 5.2.6 and the Regularity Theorem of [AW1, 8] the present Regularity
Theorem 5.5.1 will follow from the following Lemma.

Lemma 5.5.1. Suppose
1< (<o
There exists n € (0,1) such that if 0 < A < 00; a € R"; 0 < R < ooy
AR<mn; FEeC\(U"(a,R)); and acspti[E]
then
©"~(||9[E]l],a,nR) < ¢
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Proof. Owing to the way the various entities in the Lemma change under applica-
tion of homotheties and translations we find that we may assume without loss of
generality that a =0 and R = 1.

Suppose the Lemma were false. Then there would exist { € (1,00); a sequence
7 in (0,1) with limit zero; and sequences F, A such that, for each v € P,

A <m; E, €Cy, (U™0,1)) and 0 € sptd[E,]
but such that

(5.5.1) O (llo[E ]I, 0,m) > ¢
From the Monotonicity Theorem we have
(5.5.2) (0,1) >t — MO (||0[E,],0,t) is nondecreasing

for each v € P.

Replacing E by a subsequence if necessary we may use 4.9.2 and 5.2.4 to obtain
a Lebesgue measurable subset F' of U(0,1) such that E, — F in LIo¢(Un(0,1))
as v — 09,

(5.5.3) Fe ﬁ Cy, (U™(0,1)) = Co(U™(0,1))
and :
(5.5.4) 1O[EL]|| — ||O[F]|] weakly as v — oo.

Letting B equal the set of ¢ € (0, 1) such that [|O[F]||({x € R™ : |x| = t}) is positive
we observed that B is countable and infer from (4.2.2) that

lim ©" (||9[E,],0,t) = ©"*(||9[F],0,t) for any t € (0,1) ~ B.

This together with (5.5.1), (5.4.1) and the fact that A\, — 0 as v — oo implies
(5.5.5) O (||0[F]||,0,t) > ¢ whenever t € (0,1) ~ B.
As F € Co(U™(0,1)) we find that J[F] is an absolutely area minimizing integral
current of dimension n — 1 in U™(0,1). As 4.8.1 implies that
" Y(||o[F]||,x) =1 for ||0[F]|| almost all z

it follows from the Regularity Theorem of [FE, 5.4.15] that 0[F] is integration over
an oriented n — 1 dimensional real analytic hypersurface M of U™(0,1). Conse-
quently, ©"~1(||0[F]||,0) = 1 which is incompatible with (5.5.5). O

Remark 5.5.3. Suppose n = 2. Then one can do a little better than the preceding
Theorem as follows.

Let
w(m)=+v1+m? formeR.

Suppose 1,J are nonempty open intervals, g : I — J is continuously differentiable,
0< A< oo and

E={(u,v) el xJ:v<g(u)}€Cr(IxJ).
Then
(5.5.6) Lip(w' 0 ¢') < A.



32 WILLIAM K. ALLARD

Note that if g is twice differentiable at t € I then
oy _ g’
(wiog) (t) = W(t)'
We prove this as follows. Let ¢ € D(I) and let (G, h, K) € V(I x J) be such that
hi(u,v) = (u,v + tp(u)) whenever (¢, (u,v)) € G x (I x J). Then
d d / 1 99 1
DB x )|,y = [ Gowla' + 1) gac’ = [ Tac,

Moreover,
e (E) = BV x ) = 1] [ o] e’
I

To obtain (5.5.6) we let ¢ approximate the indicator function of an compact subin-
terval of I.

6. ADMISSIBILITY.

Ultimately we have in mind the study of F' € F() as in 1.3. For the time being,
it will be more convenient to consider a wider class F’s.

We will prove theorems about the regularity and geometry of the reduced bound-
ary (see (4.8) of {f > y}, y € R, where f € m.(F) and where F satisfies certain
conditions which we describe below. These conditions will be satisfied for large
classes of functionals which arise in the denoising literature including those de-
scribed in the Introduction.

All of our theorems will require that F' € F(Q2) and M € M(2) be admissible, a
notion we now define.

Definition 6.0.2. Suppose F € F(Q). For each Y € [0,00) we let
1I(F,Y)
be the infimum of the set of L € [0,00] such that

IF(f) — Flg)| < L/ﬂ \f — gldcn

whenever f,g € F() and ess sup |f| V |g] < Y. We say F is admissible if
1(F,Y) < co whenever Y € [0, 00).

Remark 6.0.4. Suppose F' € F(Q), F is admissible and k : R — R is locally
Lipschitzian. It follows that ko F' is admissible.

Remark 6.0.5. Suppose F € F(Q), F is admissible, A : F(Q}) — F(Q) and, for
each Z € [0,00), there is M € [0,00) such that

IA(f) = Alg)] < M/ \f — gl dL"
Q Q

whenever
f,ge F(Q) and esssup|f|V]gl <Z

then F o A is admissible. For example, if @ = R", k € Li(R"™) and A(f) = k* f
then the above condition holds with M = [ |k|dL™ for any Z € [0, c0).

The following simple Proposition relates the notion of admissibility to the spaces

By (9).
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Proposition 6.0.1. Suppose 0 < € < oo, F is admissible, f € m(F) and

I(F,ess sup |f|)
—

A =
Then f € BA(Q).
Proof. Suppose g € c(f, K). Then

e ([IOUfI1(K) = [10g]II(K)) < F(f) = F(g) <1(Fess Suplfl)/QIf —gl-
O

Thus the Regularity Theorem 5.5.1 for Cx(€2) applies to the sets {f > y}, y € R.

Definition 6.0.3. Suppose M € M(Q). We let
(M)
be the infimum of the set of nonnegative real numbers L such that
|IM(D) — M(E)| < LYq(D,E) whenever D, E € M(S).

We say M is admissible if 1(M) < oo.

The following even simpler Proposition is analogous to the preceding Proposition.

Proposition 6.0.2. Suppose 0 < e < oo, M € M(Q), M is admissible, D € n (F)

and
100

€

P

Then D € Cx(02).

Proof. Proceed as in the proof of the preceding Proposition. O
Thus the Regularity Theorem 5.5.1 for Cy(£2) applies to the set D.

6.1. The functionals Ng. The simplest and perhaps the most useful admissible
members of M(2) are defined as follows.

Definition 6.1.1. Suppose S € M(Q2). We define
Ng € M(Q)

by setting
Ng(E) =Xq(S,E) whenever E € M(2).

Evidently, 1(Ng) = 1 so Ng is admissible.
6.2. The denoising case, I. For example, suppose
se F(Q), ~v:R—-DR, «islocally Lipschitzian
and
F(f)= /Qv(f(x) —s(x))dL™x for f € F(Q).

(For the time being we do not assume v is convex as we did in the Introduction.)
Suppose f, g € F(£); obviously,

F(f) - F(g)] < / I (F(x) - s(2)) — 1(g(x) - s(x))| dLre < L / I — gl dL
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where L is the Lipschitz constant of v on the smallest interval containing ess inf (f—
s),ess inf (g —s),ess sup (f —s),ess sup (g —s). Thusif Y € [0,00) then 1(F,Y)
is the Lipschitz constant of v on [-Y —ess sup s,Y —ess infs|. In particular, F is
admissible. Moreover, if f € F(2), K is a compact subset of Q and g € c(f, K) we
find that L equals the Lipschitz constant of v on [ess inf (f—s),ess sup (f—s)]. Ar-
guing as in the proof of Proposition 6.0.1 we find that if 0 < € < oo and f € m.(F)
then f € Br/(€2). So Theorem 1.4.2 now follows from Theorem 5.2.6.

The following Theorem is a direct corollary of Proposition 9.1.3 which will be
proved using an elementary calibration argument.

Theorem 6.2.1. Suppose f and v are smooth, v is conver and the gradient of f
never vanishes. Then f € m.(F) if and only if

(6.2.1) div N(z) = _Y (@) = s(@) for L™ almost all x € Q

€

where we have set N(z) = |V f(z)|"1Vf(z) for x € Q.

Note that if the hypotheses of the preceding Theorem hold, I is an open interval
on which 4" > 0 and U is an open subset of Q such that f(z) — s(z) € I for
L™ almost all x € U then s is essentially smooth on U. Of course in denoising
applications one wishes to allow s to be highly irregular.

Suppose f € m.(F). Then, as will be no surprise to one who is familiar with
functions of least gradient, f may have essential discontinuities as we shall see in
10. Nonetheless, for any y € R the reduced boundaries of the sets {f > y} and
{f > y} always have have the regularity implied by Theorem 1.4.2 and Theorem
1.4.1.

7. LOCALITY.

If we impose more conditions on F' € F(Q2) we will be able to get more detailed
information about minimizers. We formulate these conditions in the next two
subsections.

7.1. Locality defined.
Definition 7.1.1. Suppose M € M(Q2). We say M is local if M is admissible and
M(DUE) = M(D)+ M(E) whenever D,E € M(Q) and DN E = 0;
here we have set
M(E) = M(E)— M) for E € M(()Q).
Definition 7.1.2. Let
S(Q) ={s € F(Q) : rng s is finite}.

Note that S(2) is a linear subspace of F(€2) which is dense in L;(€2). The
following Proposition is elementary.

Proposition 7.1.1. Suppose M € M(Q) and M is local. Then there is one and
only one

J e F(Q)
such that J is admissible and

J(ylg) = yM(E) whenever y € R and E € M().
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Moreover, J is linear and

9(6) = @) <10) [ 1f = glde™  whencuer f.g < (@),
Proof. For each s € S() let
js)=" > yM({s=y})eR

yerng s~{0}

Evidently, j(cs) = ¢j(s) whenever ¢ € R and s € S(Q). Suppose s,t € S(2). For
each (y,w) € R? let Cy,, = {s = y} N {t = w}. Then {s+¢ = z} is the union of
the finite disjointed family {C, ., : y + w = z} for any z € R. Moreover, for any
y € R, {s =y} is the union of the finite disjointed family {C), ,, : w € R} and, for
any w € R, {t = w} is the union of the finite disjointed family {C, ., : y € R}.

That j(s+t) = j(s) + j(t) follows easily.
Since the closure of S(2) in Li(Q) equals L; () there is one and only one
extension J of j to F(Q) such that [J(f)| < WM) [, |f|dL™ whenever f € F(Q).
O

The following Proposition will follow from elementary real analysis and differen-
tiation theory.

Proposition 7.1.2. If M € M(Q2), M s local and
M(B"(z,7))

7.1.1 m(x) =limsup ———————L  forxz €

(T @ D)

then m is a Borel function, sup |m| <1(M) and

(7.1.2) M(E) = M(¢) +/ mdL"  whenever E € M(Q).
E

Conversely, if N € M(Q) and there are ¢ € R and p € Lo () such that
N(E) = c+/ wdl"  for E € M(Q)
E

then N is local.

Proof. Let G be the set of (z,7) € QX (0,00) such that dist (z, R" ~ Q) < r. Since
M is admissible we find that G' 3 (x,7) — M (B"(z,r)) is locally Lipschitzian from
which it follows that m is a Borel function.

Let J be as in the preceding Proposition. Then J is a Daniell integral on S(2)
and the theory of [FE, 2.5,2.9] implies that (7.1.1) holds.

The final assertion of the Proposition is obvious. ([

Definition 7.1.3. Suppose F € F(Q). We say F is local if F is admissible and
E(f+9)=F(f)+F(g) whenever f,g € F(Q) and fg=0

here we have set
E(f) = F(f) = F(0) for f e F(Q).
For example, if F' is as in 1.3, then F' is local owing to the fact that

F(f)= / v(f(x) —s(x)) — y(—s(x))dL"x whenever f € F(Q).
{f#0}
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On the other hand, x o F' as in Remark 6.0.4 is not local unless « is affine and F o A
as in Remark 6.0.5 is not local unless [ |k|dL™ = 0 in which case F' is constant.

For the remainder of this subsection we assume that F € F(Q) and that F is
local.
It follows immediately from the definitions that

(7.1.3) |F(0)] = 0,
(7.1.4) |FP(ylg)| < 1(F,Y)ly|L"(E),
(7.1.5) |E(ylp) — E(21p)| S WF,Y)LY(E)|y — 2|

whenever E € M(Q), |y| V|z| <Y < oco. Moreover, for any y € R,
(7.1.6)

|F(ylp) — F(ylg)| < 1(F, |y\)|y\/ [1p — 1g|dL™ whenever D, E € M(Q);
Q

Definition 7.1.4. For each (z,y) € Q x R we let

. F(le"(:r r))
k(z,y) =limsup —————~.
(0:9) =B o (B )
For each y € R we let
ky(x) = k(z,y) forx € Q.

Theorem 7.1.1. We have

(i) k is a Borel function;

(i) k(x,0) =0 for x € §;
(iil) |k(z,y) — k(y, 2)| <UE,Y)|y — z| whenever x € Q, y,z € R and |y| V |z| <

Y < oo;
(iv)
F(P) = FO)+ [ Ko f@)de"s for | € F(S)
Q

Moreover, if ¢ € R; k is an L™ x L' measurable function on Q x R such that
k(z,0) = 0 for L™ almost all © € Q; for each Y € [0,00) there is L € [0,00) such
that, for L™ almost all x € €,

lk(z,y) — K(z,2)| < Lly — 2| ify,2 € Rand |y| V][ <Y
and G € F(Q) is such that
G(f)zc+/m(x,f(x))d£”x for f € F(Q)

Q
then G is admissible and local.

Proof. The estimates (ii) and (iii) follow directly from (7.1.3) and (7.1.5). Since

F(le“'(:v,r))

L (B"(z,r))

is locally Lipschitzian by virtue of (7.1.5) we find that (i) holds.
Let

QxR x(0,00) 3 (z,y,7) —

H(f)=F(0) —|—/Qk(x,f(ac))d£"x for f € F(Q).
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The estimate (7.1.5) and the locality of F' imply that
M(E) 3 E — F(ylg)

is local. From Theorem 7.1.2 we infer that

F(E)= /Eky dL" whenever y € R and E € F(Q).

It follows that F(ylg) = H(ylg) whenever y € R and E € M(Q). Since F and H
are local we find that F(s) = H(s) for s € S(Q0). Since F and H are admissible
and S(€2) is dense in Ly (€2) we find that F = H.

The final assertion of the Proposition is obvious. O

7.2. A generalization of the “layer cake” formula.

Definition 7.2.1. Whenever y,z € R and y # z we let
F(z1g) — F(ylg)

Jy - (E) = p— whenever E € M(Q).
Proposition 7.2.1. Suppose y,z € R and y # z. Then J, . is local. Moreover,
(7.2.1) | Jy,-(E)| < 1(F,Y)L™(E)
and
(7.2.2) ya(D) = Jy 2 (E)| < (F,Y)Sa(D, E)

whenever |y|V|z| <Y < oo and D, E € M(2).

Proof. The locality of J,, . is a direct consequence of the locality of F'. (7.2.1) is an
immediate consequence of (7.1.5).
Since F' is local we have

F(z1p) — F(ylp) — (F(21p) — F(ylg))
= F(21png) + F(z1p~g) — (F(ylpng) + F(ylp~g))
— ((F(21gnp) + F(21~p) — (F(ylpnp) — F(yle~D)))
= F(21p~p) — F(ylp~g) — (F(21p~p) — F(ylE~D));

(7.2.2) now follows from (7.1.5). O
Definition 7.2.2. Suppose y € R. Keeping in mind (7.2.1) we define
L,,U, € M(Q2)
by letting
L,(E)= h?ii;lf Jy(E) and Uy(E)= lirzn_il/lp Jy.2(E)
for E € M(Q)
For each (z,y) € @ x R we let

Ly(B"(z,7)) Uy(B"(z, 1))
I(z,y) = hrf}l%)nf m and we let u(x,y) = hrr:lsoup m

For each y € R we let ly(x) = l(z,y) and uy(x) = u(z,y) whenever x € Q.
Theorem 7.2.1. We have

(i) I and u are Borel functions.
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(ii) (Ly) <UWF,Y) and L(U,) < I(F,Y) whenever y € R and |y| <Y < oo; in
particular L, and Uy are admissible for any y € R.

(iii) L, and U, are local and equal for L' almost all y.

(iv) For any f € F(Q) we have that

(=00,0) 3= U,({f <y}) and (0,00) 3y —U,({f = y})

are L' summable.
(v) For any f € F(2) we have

0 [e%)
F(f) = F(0) - / U,({f < y})dC'y + / U,({f = y} dLy.

Proof. Since

Jy,-(B"(2,7))

L7 (B (z,7))

is locally Lipschitzian by virtue of (7.1.5) and (7.1.6) we deduce that [ and u are
Borel functions.

(ii) follows immediately from (7.2.2).
For each E € M(Q) let

QO xRxRx(0,00) > (z,y,2,7) —

Z(E)

be the set of y € R such that lim,_.,, J, .(E) exists and note that £L!(R ~ Z(E)) =0
since R 2 y — F(ylg) is locally Lipschitzian.

Let D be a countable subfamily of M () which is dense with respect to Xq (-, ).
Let W = NpepZ(D) and note that

LYR ~ W) =0.
Suppose y € W. Let E € M(2) and let n > 0. Choose Y such that |y| <Y < oc.
Choose D € D such that 1(F, Y)Y (D, E) < n/3. Choose § > 0 such that
O<lw—y|<dand 0< |z —y| <6 = |Jyw(D)—Jy-(D)| <n/3.
Then if 0 < |w —y| < 6 and 0 < |z — y| < & we infer with the help of (7.2.2) that
[ Jyw(E) = Jy(E)] < [Jyw(E) = Jyw(D)] + |Jyw(D) = Jy-(D)]
+ [Jy.2(D) = Jy (D)
<1(F,Y)Sq(D, E) + /3 + 1(F,Y)Sq(D, E)
<.

It follows that y € Z(E). Thus L, = U,. Since J,, . is bounded for z € R ~ {y} we
infer that L, is local. Thus (iii) holds.

Suppose f € F(2) and ess sup |f| <Y < co . Whenever yR ~ {0} it follows
from (7.2.1) that

U,({f 2y SUEY)L"({f = y}) ify>0
and
U,({f <yl SUEY)L"({f <y}) ify <O

so (iv) holds.

It remains to prove (v). For each f € F() let

0 o
G(f) = F(0) - / U, ({f < y})dLly + /0 U,({f > y} dLly.

— 00
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Suppose E € M(Q). Since R 3 z — F(z1g) is locally Lipschitzian we find that
F(ylg) = G(ylg) for any y € R. It follows from the locality of F and U, for £
almost all y that F' and G agree on S(Q2). It then follows from the admissibility
of F, the estimates (7.2.1), (7.2.2) and the fact that the closure of S(Q2) in Ly ()
equals L1 (2) that F = G. O

Corollary 7.2.1. We have l(x,y) = u(x,y) for L™ x L almost all (x,y) € Q x R.
Moreover,

0 L
(7.2.3) k(z,y) = {_ fy u(z,z)dLz ify <0,

Jow(@,z)dL'=  ify >0
whenever y € R ~ {0}.

Proof. If y € (0,00) and F € M(F) then, by combining Theorem 7.1.1 (iv), Theo-
rem 7.1.2 and the preceding Theorem one obtains

/Ek(x,y) dC"z = F(ylg) = /Oy U,(E)dL" = /Oy (/E L, dE") ac'z.

One may obtain a similar formula if y < 0. O

Theorem 7.2.2. Suppose 0 < € < 0o, f € F(Q) and, for L* almost ally € R ~ {0}

either y <0 and {f <y} en(-Uy) or y>0and{f>y}en(U,).
Then f € m(F).
Remark 7.2.1. Note that for L' almost all y we have [{f > y}] = [{f > v},
{f <y}l =Uf <y} and L, =U,.
Proof. Suppose K is a compact subset of Q, g € F(Q) and spt[f — g] C K.
Then for £ almost all y € (—00,0) we have Yo x({f < y},{g < y}) = 0 and
{f <y} € n.(—U,) which implies

ello{f <yII(K) = U,({f <y}) < €llofg <y}I(K) = Uy({g < y}).

For £! almost all y € (0,00) we have Sax({f >y}, {g > y}) =0and {f >y} €
n.(U,) which implies

ellol{f = yHII(E) + U,({f = y}) < €l|dl{g = y}HI(K) + Uy({g = y})

We integrate these inequalities over (—oo,0) and (0, 00), respectively, and use (4.4)
and (ii) of Theorem 7.2.1 to complete the proof. O

7.3. Results when F is convex.

Theorem 7.3.1. The following are equivalent.
(i) F is convex.
(i) R>y— F(ylg) is convex for any E € M(R).
(iii) For any x € Q,
R >y~ k(z,y) is convex.
(iv) R>y— Ly(E) is nondecreasing for any E € M(Q).
(v) R>y— Uy(E) is nondecreasing for any E € M().
(vi) For any x € Q,

R 3>y I(z,y) is nondecreasing.
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(vi) For any x € Q,
R >y — u(z,y) is nondecreasing.

Moreover, if F' is convex and y € R then Ly and Uy are local, L, = U, for all
but countably many y € R,

(7.3.1) li%an(E) =L, (E)
and
(7.3.2) lifn U.(E) =Uy(F)

whenever E € F(Q).

Proof. That (i) implies (ii) is immediate.
Suppose (i) holds. Whenever x € Q, 0 < r < 00, —00 < y < z < 00 and
0 <t <1 we have

F((l - t)y =+ tZIB"(wﬂ‘)) < (1 - t) F(le"(:mr)) F(ZlB"(w,T))
L7 (B™(x, 1)) - L7 (B (z, 1)) L7 (B (xz, 1))
from which it follows that
k(z,(1 =ty +tz) < (1 —t)k(z,y) + th(x, 2).

Thus (iii) holds.
If (iii) holds then (i) holds by virtue of Theorem 7.1.1.
Thus (i),(ii) and (iii) are equivalent.
We leave the proof of the following elementary Lemma to the reader.

Lemma 7.3.1. Suppose g : R — R, g is absolutely continuous and

hi(y) = liminf 9(z) = 9(y) and hy(y) = limsup 9(z) = 9(y)
2=y zZ—=1Y z—y 2=y
whenever y € R.
Then g is convex if and only if h; is nondecreasing if and only if h, is nonde-
creasing.
Moreover, if g is convex then
hi(y) =limhi(z) and hy(y) =limh,(2)
2Ty zly

whenever y € R.

From the Lemma we infer that (i) and (iv) are equivalent and that (ii) and (v)
are equivalent.

From (iii) of Theorem 7.2.1 we know that L, and U, are local for £! almost y
which implies that (iv) and (vi) are equivalent and that (v) and (vii) are equivalent.

Suppose (iv) holds and F € M(E). Since R 3 y — F(ylg) is locally Lipschitzian
we have y

1 .
Pytg) = o L)ALz TSy < oo,
- fy Ly(E)dL'z if —co <y <O0.

It follows that R 3 y — F(ylg) is convex so (iv) implies (ii). In a similar fashion
one may show that (v) implies (ii).
(7.3.1) and (7.3.2) hold since M(Q) 3 E — F(ylg)
(iii) of Theorem 7.2.1 we may choose an increasing

Suppose F' is convex. Then
is convex. Suppose y € R. By
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sequence z with limit y such that L, is local for each v € P. From 7.3.1 we infer
that
L,(E)= lim L, (F) whenever E € M(Q).

It follows that L, is local. In a similar fashion one may show that U, is local.
Finally, let C be a countable subset of M(£2) which is dense with respect to Xq (-, -).

Since M(Q) 3 E — F(ylp) is convex we infer that there is a countable subset C'
of R ~ {0} such that L,|C = U,|C for y € (R ~ {0}) ~ C. But if y € R ~ {0} and
L,|C = Uy|C then L, = U, since L, and U, are admissible. O

Using (iii) of Theorem 7.2.1 and the slicing formula (4.9.1) one easily deduces
the following Theorem.

7.4. Working in the product 2 x R. For the remainder of this section we adopt
the notation of 4.11.

In order to obtain the fundamental Theorems 7.4.2 and 7.4.3 we will use F to
define a functional F' on subsets of  x R which will be very useful in analyzing
(¢, F)-minimizers. This is one of the main new ideas of the paper. The first of
these Theorems is a sort of converse of Theorem 7.2.2. Among other things, it
will allow us to obtain the curvature and conjugacy results which follow in 8 and
will facilitate the construction of minimizers. Results similar to ours this but in a
different context were obtained independently in [AC].

Proposition 7.4.1. Suppose B € G(?). Then

(—00,0) 2y = Uy({z: (z,y) €G™} and (0,00) 3y —Uy({r: (z,y) € GT}
are L' summable.
Proof. Proceed as in the proof of (iv) of Theorem 7.2.1. O

Definition 7.4.1. Let
FT:G(Q) =R
be such that
0 [e%s)
FI(G) = F(0) —/ Uy({z: (z,y) € G™}) dﬁly+/ Uy({z : (z,y) € G*})dLy
0

whenever G € G(Q).
We have a useful comparison principle.
Theorem 7.4.1. We have
F(GY) < FY(G) whenever G € G(Q).

Proof. As we shall see, the Theorem will follow rather directly from the following
Lemma.

Lemma 7.4.1. Suppose a € Q, E € M(R),
et =LYEN(0,0)), and e =LY(EN(~00,0)).
Then

k(a,et —e”) — k(a,0) < (/ 7/ > u(a, y) dL'y.
EN(0,00) EN(—00,0)
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Proof. Suppose ¢ € D(R) and 0 < ¢ < 1. Let

J” =(-00,0), J'=(0,00), I*= [ g¢dL
J*
and let ® € £(Q) be such that & = ¢ and ®(0) = 0. Then
(7.4.1) 0<P(y)<y ifyeJ and y<P(y)<0 ifyeJ .

We let
k(y) = k(a,y) whenever y € R.
From (7.4.1) and the absolute continuity of x we infer that
k(@ (y)) — r(0) = / w(a, B(2))p(2) ALz < / w(a, 2)¢(z) ALz
0,y) (0,y)
whenever y € JT and
K0) = (@) = [l oEoE ALz [ u(a o) et
(,0) (y,0)
whenever y € J~. Since lim, 4 ®(y) = £I* we infer that
R(ETE) — k(0) < + / w(a, 2)p(2) AL,
J+
From this inequality and the convexity of x we find that
k(IT—I7)—k(0)=r(It —I7) = k(=I")+ k(=I") — (0)
< k(IT) = k(0) + k(—I7) — k(0)

< [ wtamoacy— [ uapoacty

We let ¢ approximate 1g to complete the proof of the Lemma. (I
From the Lemma we infer that
K G (@) ~ klz,0) < [ u(e.y)ac'y - [ ula,y) dL'y
{y:(=,y)eGT} {y:(=,y)eG~}

for £ almost all z € Q. Integrating this inequality over £ we use (iii) of Theorem
7.2.1 and Theorem 7.1.2 to obtain

F(GY — F(0)

[ 0
< / (/ Uy dE") Lty —/ </ Uy dL'") Lty
0 {z:(z,y)€GT} —o0 {z:(z,y)eG~}

[e%s) 0
~ [ e @ e nacty - [ U e @) e 6y acty

— F(G) - F(0),
as desired. 0
Theorem 7.4.2. Suppose 0 < e < oo, f € m(F) andy € R~ {0}. Then
(7.4.2) {f>yten(Uy) ify>0 and {f<y}en (-U,) ify<0
and

(7.4.3) {f>y}ten (L, ify>0 and {f<y}en(-L,) ify<0.
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Proof. We will show that (7.4.2) holds for each y € (0,00) and leave to the reader
the straightforward modification of the proof required to show that (7.4.2) holds
for y € (—0,0) and that (7.4.3) holds for each y € R ~ {0}.
For each y € R ~ {0} we let
{f >y} ify>0,
D, = .
{f<y} ify<o.

Suppose b € (0,00), E € M(Q) and K is a compact subset of {2 such that
Yo~k (Dp, E) = 0. We will show that

(7.4.4) €[[O[Dp][|(K) + Up(Dy) < €||O[E][|(K) + Up(E).

Let v(z) = dist (z,K) for x € Q and let R be the supremum of the set of
r € R such that {v < r} is a compact subset of 2. Suppose b < Y < oo and let
Z = (b,Y) x (0,R). For each (y,r) € Z let

Cyr=(En{v<r})U(Dyn{v>r}) e M)
and note that
(7.4.5) Eiosr}(Dy, B) SUFY) Sk (Dy, £) = 1(F,Y)Zqk (Dy, Dy).
This implies
(7.4.6)  |Uy(Cy,r) = Uy(E)| SUF,Y)E (050} (Dy, E) <UF,Y)Eank (Dy, Ds).
Also, keep in mind that

(7.4.7) lim o (Dy, Dy) = 0.
Yy

For each (y,r) € Z let
a(y,r) = €l[0[Dy]||({v < 7}) + Uy (Dy)
and let
by, r) = €l[O[Cry ]Il ({v < 7}) + Uy (Chry).
Let
W =A{(y,r) € Z:aly,r) <by,7)}
Lemma 7.4.2. L2(Z ~ W) = 0.
Proof. Let r € (0, R), let I be a bounded open subinterval of (b,Y) and let
G={z,9) e AxR~1D):zeD}U{(z,y) €UxI:xeCy,}

Evidently,
GY(x) = f(z) for L™ almost all 2 € {v > r}

from which it follows that
oA (v < r}) + F(f) < €ll0[GY]|({v < 7}) + F(GY).
Let
P= [ 10D < rhacty
R~T
and let o
Q=- [ wwyacy+ [ vmacty

—00 (0c0)~1I
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Keep in mind that [|0[{f > y}]|| = ||0[D,]|| for any y € R. We have

NOLA[|v <7}) = P+ / 101Dy [|({v < r})dL'y
I
and
F(f)=F(0)+Q+ /I Uy(Dy) dL'y.
From Propositions 4.11.3 and 4.11.4 we obtain
101G ({v < r}) < 19[G)Ldg|({v < r} x R)

= [ 1ol (@) € G0 < 1)) ac'y
=P+ [ 1900, 1w < 7.
From (7.4.1) we obtain

FGY < FI(@) = ()+Q+/ (Cry) ALYy,

It follows that
/a(yﬂ") 'y < /b(y,r) dL'y.
I I

Owing to the arbitrariness of I find that we infer that
LY{y eR~{0}: (y,r) gW}) =0

so the Lemma is proved.

(]

Suppose (y,r) € Z. Keeping in mind that Yok (F, D) = 0 we infer from (4.4)

that
0C,y)L{v <r} =0[E|L{v < r}+ < [Dy] — [Dy],v,7 >
so that

10[Cy AlI({v < 7}) < [IOLE]|({v < 7}) + M(< [Dy] = [D], 0,7 >).

It follows that
b(y,r) < cly,r) +d(y,r)
where for (y,7) € Z we have set
c(y,r) = €l|O[E]|({v < r}) + Uy(E)
and
d(y,r) = Uy(Cy,r) — Uy(E) + M(< [Dy] — [D], v, 7 >).
y (4.4.6) we have

R
M(< [Dy] = [Dy], 0,5 >) dL's < Sqo<pcry(Dy, Dy)
0

whenever y € R ~ {0}. Suppose 0 < p < R and let r be a decreasing sequence
n (p, R) with limit p. Suppose 7 is a sequence of positive real numbers with limit

zero. In view of (7.4.7) there is a sequence ¢ of positive real numbers such that

— [Dy],v,8 >)dLrs < n, provided 0 < |y —b| < 6,.
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for any v € P. Consequently, there are decreasing sequences y in R ~ {b} and s in
(p,r) with limits b and p, respectively, such that s, < r,, (y,,s,) € W and

M(< [Dy,] = [Dy), 0,50 >) <y
for any v € P. It follows from (7.4.6) and (7.4.7) that
lim d(yy,s,) =0
and from (7.3.2) that
Tim_ e(y,.s,) = [9E]|[({v < p}) + Un(B).
From (4.2.2) and the facts that a < b on W and b < ¢+ d on Z we infer that
el[[[Du]||({v < p}) + Up(Ds) < liminf a(y,, s,) = €[[0[E][[({v < p}) + Up(E).
Owing to the arbitrariness of p we find that (7.4.4) holds. O

Theorem 7.4.3. Suppose G € G(Q), H is a compact subset of Q such that
spt[GT]—[GT]C H xR

and, for L' almost all y,
(7.4.8)
{z:(z,y) G} €en(-U,) ify<0and {z:(z,y) € G} €n(Uy) ify>0.

Then G+ € m (F).
Proof. Note that spt [G'] C H. For each y € R ~ {0} let

D. = {Ii(l’,y)EG} ify >0,
Yz (my) €GY ify <.

Let K be a compact subset of Q and let g € F(2) N BVZOC(Q) be such that
spt [G' — g] C K. Tt follows that spt [g] C H U K.
Let Y be the set of y € R ~ {0} such that (7.4.8) holds. For y € Y N (—00,0)

we have
spt [{g <y} - [D)) CHUK
which, as Dy € n.(—U,), implies
10[Dy}|(H U K) = Uy(Dy) < [|0[{g < y}II(H U K) = Uy({g <y}).
For y € Y N (0,00) we have
spt [{g > y}| - [Dy] CHUK
which, as Dy € n.(Uy), implies

10Dy }|(H U K) + Uy(Dy) < [|0[{g > y}I[(H U K) + Uy({g = y}).
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Integrating over y € R with respect to £' and using Proposition 4.11.4, Theorem
7.4.1, (4.4 and (ii) of Theorem 7.2.1 we find that

IOIGHII(H U K) + F(G)

< [ o, v Ry acty + F(@)

— 00

0
- / 1O[D,)I|(H U K) — Uy(D,) dCly

+ [ T OID I (H U K) + U, (Dy) Ly
0
0
s[ 161{g < v}l (H U K) — U,({g < y}) L'y

+ [l = )i U K) + U, (g = ) ey
0
= [10[gl[|(H U K) + F(g).
O
7.5. The denoising case, II. Suppose s,7,F are as in 1.3. We illustrate the

foregoing notions in this case.
Let A be the set of a € Q such that

limr*”/ |s(z) — s(a)|dL™ = 0.
B"(a,r)

r]0

Proposition 7.5.1. We have
(i) L™ (2~ A) =0.
(i) k(a,y) =~(y—s(a)) —vy(—s(a)) whenever (a,y) € A x R.
(iii) F' is convez if and only if v is convez.

Proof. (i) follows from elementary differentiation theory for £ as in [FE, 2.9]. (ii)
follows from the uniform continuity of 4 on compact sets. From Theorem 7.3.1 we
find that F is convex if and only if R 3 y — k(z,y) is convex for each x € Q from
which (iii) follows. O

For each y € R we let

(7.5.1)  Bi(y) = lim inf 12) =) and we let f3,(y) = limsup M
2l 7Y zly zZ—y

Note that g;, 8, are Borel functions.

Proposition 7.5.2. For each y € R we have
Ly(E)= / By — s(x))dLx and Uy(E) = / Buly — s(z))dL x
E E

whenever E € M(Q). In particular, L, and U, are local for each y € R.

Proof. Since v is locally Lipschitzian the Proposition follows from the Lebesgue
Dominated Convergence Theorem. ([
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Corollary 7.5.1. Suppose 1 < p < oo and y(y) = |y|’/p for y € R. Then

L) = U,(8) = | o sty /| ORI

whenever y € R ~ {0} and E € M(Q).
Proof. Simple calculation. O

7.6. The Chan-Esedoglu functional. Let us now suppose
v(z) =1z| forzeR

and let
F(f):/|f—s\d£” for f € F(Q).
Q
Then
-1 if —co <y <0, -1 if —oo <y <0,
- d Bu(y) =
Auly) {1 f0<y<oo 04 0l {1 if0<y<oo

Suppose y € (0,00). Then
L(B) = —L"(En{s > y}) + L (BN {s < y})
=—L'{s>2yh) +L'{s =y}t~ E)+ LY(E ~{s>y})
= Ngszyy (B) = L"({s 2 y})
and
Uy(B) = ~L"(Bn s > y}) + L (E {s < y})
=—L'"{s>y}) +L'({s >yt~ E)+L"(E ~{s>y})
= N>y (B) = L"({s > y})
whenever E € M(Q).
Suppose y € (—00,0). Then
Ly(E)=—L"(ENn{s>y}) + LY(EN{s <y})
=—LYE~{s<y})+L'{s<y}) - L'({s <y}~ E)
= —Npsey (B) + L"({s < y})
and
Uy(E)=—-L"(EN{s>y}) +L"(EN{s <y})
=LY E~{s<yh)+L'({s<y}) —L'{s <y}~ E)
= Ny (B) + L"({s < v})
whenever £ € M(Q).
This implies
( ) ity <0
e(Nis>yy) iy >0;
( ) if y < 0;
( ) ify>0;
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8. CURVATURE AND CONJUGACY.

8.1. First and second variation. The following theorem will be proved by calcu-
lating the appropriate first and second variations, invoking the Regularity Theorem
for C»(€2) and then utilizing higher regularity results for the minimal surface equa-
tion.
Theorem 8.1.1. Suppose

(i) M € M(Q) and M is local;

(ii) W is an open subset of Q, k € N, 0 < p < 1, and ¢|W is of class CFHH;

and

M(E) = / ¢dL"™  whenever E € M(Q) and E C W;
E

(iii) D en (M), S=spt[D] and C =W Nbdry S;
Then C is and embedded hypersurface of W of class CF+2+H,
Sw(D,S) =0
and
(8.1.1) H(z)= —%C(x)ns(x) forzeC

where H is the mean curvature vector of C and ng is the outward pointing unit
normal to S along C.

Moreover, if ¢ is of class C' on W and Q is the square of the length of the second
fundamental form of C' as defined in 3 then

(8.1.2) /Ce (IVeo(x)]* + ¢>(x)2Q(x)) — ¢(2)*V{(z) eng(x)dH" 'z >0

for any ¢ € D(Q); here, for each x € C, Voo(x) is the orthogonal projection of
Vo(x) on Tan(C,z) and Q is the square of the length of the second fundamental
form of C.

Proof. We may assume without loss of generality that W = Q. For each z € b(D)
we let P(z) equal to orthogonal projection of R™ onto {v € R : v e np(z) = 0}.
Part One. Supposea € C,0 < < 1and 0 < 3 < co. From Proposition 6.0.2 and
Theorem 5.5.1 there is 7 € (0, 00) such that U™(a,v/2r) C U and S € R(a,r, 1, 3).
Let W, U, g be as in Definition 5.5.1. Let U = U"1(0,r) and let V = U'(0,r). For
each u € U let
1
Gu) = (u,9(u), J(u) =1+ [Vg(u)* N(u)= m(—VQ(U), 1).
Note that ¥~ o G carries U diffeomorphically onto S N W—1[U x {0}].
Let j(u,v) = (0, ¢(u)) for (u,v) € U x V. Let (I, h, K) € V() be such that

d _ .

alll ohyoW I(G(u))’t=O =7(0,¢(u)) whenever u € U.

For each t € I let By = {hi(x) : x € D}, let

A(t) = IDIEJI(K) and let B(t) = M(E,).
From Theorems 4.12.1 and 4.12.2 and the fact that D is an (e, M)-minimizer we
find that

0= %EA(t) + B(t)|t=0 = /etrace(al(x)) +((ho e np)d||0[D]||
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where a; is as in (4.12.1).

Let L : R® — R"! x R be such that L = d¥(x) whenever x € R™ and note
that L is a linear isometry. For each u € U let Q(u) be orthogonal projection of
R"~! x R onto Tan(rng G,G(u)). If u € U and 2 = =1 0 G(u) then

trace a) (z) = trace dhg(z) o P(x)

= trace (L o Ohg(z) o L") o (Lo P(z) o L)

= trace 35 (G(u)) o Q(u)
— trace 0 (G(u)) — 97 (C(u)) (N () » N(u)
__VaeVe,
J2
and
—1
(@) (ho o ms)(x) = C((T 0 G)())i(Glu)) o Nu) = 2T )

‘We conclude that
/ _VQ;VQb +¢(CO\IJ_1 OG)d,Cn_l — 0
U

Thus g is a weak solution of the partial differential equation

divs vy = 2020

Inasmuch as dg is Holder continuous, standard results on regularity of weak solution
of elliptic equations, as found for example in [GT][8.3], imply that g is of class
Ck+2+1 and that (8.1.1) holds on C N ¥~ LU x V].

Since a is an arbitrary point of C' we conclude that C is of class C¥*2T# that
C has a second fundamental form and that (8.1.1) holds everywhere on C.
Part Two. We now suppose ( is continuously differentiable. Let 11, @, H be as in

(3).
Since C is of class C? we may choose a function IV :  — R" of class C'' such
that N(b) = np(b) whenever b € C. for any = € b(D) we have

P(2) o TI(&) (N (x)) o P(x) = P(x) 0 N (x) 0 P(a);

invoking (8.1.1) we obtain

) (2) ¢ N@) = trace P(2) 0 ON(2) o ().

Next we choose a sequence Y € £(€2, R™) such that
Y, — N|+|0Y, —ON| -0 asv— o0

uniformly on compact subsets of 2.

Suppose ¢ € D(Q2) and let K = spt¢. Let I be an interval in R containing
0 such that, for each v € P, if h,(t,2) = z + ¢(x)Y, (z) for (¢,x) € I x Q then
(hy,I,K) € V(). Note that

(hy)y = ¢Y, and (h,),=0 forallveP.
For each v € P and each t € [ let E,; = {h,(t,z) : « € D}, let
A, (t) = ||O[Ev)|[(K) and let B,(t) = M(E,4).
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For each v € P let a1 4,a2,,a3 ., A1, A2, equal a1, a2, as, A1, Aa, respectively, as
in 4.12.1 with h there replaced by h, and let b, equal b as in 4.12.4 with h there
replaced by h,. We have that

a1, — Pod(¢N)o P =¢(Po(ON)o P);
ag,, — PLod(¢N)o P = ((0¢) o P) N;
az .y — 0;

b, — trace (P o d(¢N) o P)(¢N) = (¢*H)N
uniformly on b(D). Thus

(8.1.3)

2¢”

Az = ¢*(H o N)* +10¢ 0 PI” = °Q* = ¢*2= + 0 0 P|* - ¢*Q”

and
Boyy — $*C(H o N) + (Vo =~ 2¢°C* + $(VC e N)

uniformly on b(D). From Theorems 4.12.1 and 4.12.2 and the fact that D is a
minimizer we infer that

0< (jt) (eAy + B)(®)

t=0
2
= [€6*s; 41060 PP - Q%) - Z6¢ + (Vo M) d]oID)]

— [900 PP - °@) + (v o N doD)|
which establishes (8.1.2). O

8.2. The denoising case, III. Suppose s, and F are as in 1.3; 7y is convex;
0<e<oo;and f € m(F).
For each y € R ~ {0} let

o iz ity>o,
Y {f <y} ify<o.

From Theorem 7.4.2 we infer that

De n.(—Ly) %f y <0,
n.(L,) ify>0.

Suppose y € R ~ {0}; W is an open subset of ©; ( : W — R, k is a nonnegative
integer; 0 < p < 1; ( is of class C**#; and

¢(z) =ly(x) for L™ almost all z € W;

and C = W Nnbdry D,. We can then infer the first conclusion of the preceding
Theorem and we can infer the second conclusion if, in addition, ( is of class C!.
This will trivially be the case if s is essentially constant in U.

In case n = 2, as we shall see in 10 and in [AW2], this is enough to get many
interesting results.

Obviously, similar remarks hold if 3;, L, above are replaced by 3,,U,.

Let us now assume n =2 and A is a connected component of C.

Suppose either

(a) z € R and s(x) = z for £2 almost all z € U;
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(b) By —z) #0,
e v oism-2 <,
== ™ {—1 if By — 2) > 0;
(c) v(y) = ly| for y € R;

(d) ess sups|U < y,
R=¢€¢ and o=1;
or
(e) (y) = ly| for y € R;
(f) ess infs|U >y,
R=¢ and o=-1.
Then, for some ¢ € R?, A is an open arc of the circle {z € R? : |x — c| = R}; the
length of A does not exceed mR; and, for each a € A, there is § € (0, R) such that

(8.2.1) ENU*a,6) ={r €R?: |z —¢| < R} NU*a,6) ifo=1
and
(8.2.2) ENU?%a,8) ={z €R?*: |z —¢| > RyNU*a,0) ifo=-1.

Moreover, if (a) holds and G(y — z) = 0 then A is contained in a straight line.

This result, together with the regularity theorem for C,(2), will allow us to
produce the examples at the end of this paper.

All of these assertions, except the assertion that the length of A does not exceed
7R, follow directly from Theorem 8 with m there equal to 1 and with any p € (0,1).
Care must be take to ascertain the whether the mean curvature vector of A at a € A
is a positive or negative multiple of ng(a).

Let L be the length of A and let R be as above. Note that ¢ is constant and that
the length of second fundamental form equals 1/R?. The second variation formula
(8.1.2) implies that

boe 1 2 1,1
/0 @' (o) R (0)°dLo >0

for all continuously differentiable ¢ : [0, L] — R which are differentiable on (0, L)
and which vanish at 0 and L. Letting

¢(0o) = sin % for o € [0, L]
we infer that L < wR.

9. SOME ADDITIONAL RESULTS.

9.1. Calibrations. We suppose throughout this subsection that

f:Q—R,
that f is C? and that

Vf(x)#0 whenever z € Q.
We let
N(z) =|Vf(z)|"'Vf(z) whenever z € Q

and we let

w=N_1V"
thus w is a differential (n — 1)-form on € of class C*.
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Note that
ngs>y(2) = —N(z) whenever y € R, z € Q and f(z) = y.
From (4.8.1) we infer that

(9.1.1) [odioe)] = - [ one o N alo(E)| = -a(E)(o)

whenever F is a subset of {2 with locally finite perimeter, ¢ € D(Q2) and ¢ > 0 with
equality if [E] = [{f > y}] for some y € R.
From (4.5.2 we have
dw = div NV";
thus
Hy=divN on{f=y}
where H, is the mean curvature vector of {f = y}.

Proposition 9.1.1. Suppose ¢ € D(Q)), K is a compact subset of Q) containing
the support of ¢ and (I,h,K) € V(Q) is such that hi(z) = z + top(x)N(x) for
(x,t) € Qx I. Then

(9.1.2) %Ha[fo h K|, = —/qudivN |V fldL™.
Proof. From (1.1.1) we obtain
017 o i) = [ V(£ ool ac.
By a straightforward calculation which we leave to the reader one obtains

d
SV o)l =V(6Vf) e N.

But
V($IVf]) o N = div(¢]V f|N) - ¢|V f|div N.

Proposition 9.1.2. Suppose y € R, g € BVIOC(Q), € D), $>0 and
Spt[f — g] C int {9 = 1}.
Then

/a»dnamu —/¢d\|a[gn|

< / </ div N dc™ —/ div N d£"> acty.
{f<y<g} {9<y<f}

Proof. Suppose y € R. Keeping in mind (4.5.5) we use (9.1.1) to obtain

/¢>d||8[{f > )| —/¢d||a[{g ol

< (Ol{g =y}l = {f = y})(¢w)
=({g =y} - {f = y})(d(¢w))
={g =y} - {f =2 y})(divNV")

:/ div N dL" —/ div N dc”.
{f<y<g} {9<y<f}
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Now integrate this inequality over y € R and use (4.9.1). O

Proposition 9.1.3. Suppose 0 < A < co. We have
feBANR) < |divN| <A

Proof. Suppose |divN| < . Let g € BVZOC(Q) be such that spt [f —g] is compact
and let ¢ € D(Q) be such that spt[f — g] C int{¢ = 1}. From the “layer cake”
formula (4.10.2) we infer that

/ (/ —/ )divN acrdcety
{f<y<g} {9<y<f}

= )\/ (/Q ’1{g<y§f} o 1{f<ySg}| d/:n) dﬁly
:A/ \f —gldLC".
Q

From the preceding Proposition we infer that f € B, ().
On the other hand, suppose f € Bx(Q2) and y € rng f. Suppose ¢ € D(Q).
From Theorem 5.3.1 we obtain

/ trace P(z) 0 O($N)(x) o P(x) dl|O[Lf > y)]||z < A / el dIIILf = )l

where, for each x € {f = y}, we have let P(x) be orthogonal projection of R™ onto
{v €R":veN(x) =0} To complete the proof we need only observe that

trace P(x) o O(YN)(z) o P(z) = ¢¥(x)div N whenever x € {f = y}.

Owing to the arbitrariness of ¢ we conclude that |div N| < )| O

Proposition 9.1.4. Suppose F € F(Q); F is local and convex; u is as in Definition
7.2.2; and 0 < € < 00.
Then f € m(F) if and only if

(9.1.3) divN = ule, /(z)) for L™ almost all z € Q.
€

Proof. Suppose (9.1.3) holds, g € BVlOC(Q) and spt [f — g] is compact. Recall
from Theorem 7.3.1 that

R >y~ u(z,y) is nondecreasing

for L™ almost all x € Q. For any y € R we estimate

€ (/ —/ > div N dL"
{f<y<g} {9<y<f}

_ /{ I / w(z, f(z)) Lz

{9<y<f}

S/ u(z,y) dﬁn’x—/ u(x,y)dL .
{f<y<g} {g<y<f}
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Moreover, for any y € R ~ {0} we have

/ u(z,y)dL"x — / u(z,y)dL"x
{f<vy<g} {g<y<s}

Uy({f <y}) -U,({g <y}) ify<0,

Uy({g 2 9}) =U,({f 2 y}) ify>0.
Integrating with respect to y and invoking Proposition 9.1.2 and Theorem 7.2.1 (v)
we infer that f € m.(F).

To prove the converse statement, suppose ¢ € D(Q), let (I,h, K) € V() be
such that hi(z) = ¢ + to(z)N(z) for (t,z) € I x K, let

a(t) =||0[f o he]||(K) and let b(t) = F(f o hy)

whenever ¢ € I. From Proposition 1.1.1 we have
0) = | 6(o)div N (2)[ f|(2) dL"
Q
moreover, from (iv) of Theorem 7.1.1 and (7.2.3) we obtain
. d
b0) = [ Gkt o (o), de"s
= [ ule f@)o()V (@) o N(o) de"s
= [ wte @)@V (e e

Since ea(0) + b(0) < ea(t) + b(t) for t € I we infer that a(0) 4+ b(0) = 0. Owing to
the arbitrariness of ¢ we infer that (I) holds. O

9.2. Some results for functionals on sets. See [AC]| for a similar result in a
different context.

Proposition 9.2.1. Suppose M, N € M(Q), M and N are local, 0 < € < o0,
Dem(M), E€m.(N) and spt[D U E] is compact. Then

N(E ~ D) < M(E ~ D).
In particular, if
M(G) < N(G) whenever G € M(Q) and L™(G) > 0
then
L"(E ~ D) =0.

Proof. Without loss of generality we may assume M = M and N = N. Since
spt [D] Uspt [E] C spt [D U E] we have

eM(9[D]) + M(D) < eM(9[D U E)) + M(D U E)

and
eM(9[E]) + N(E) <eM@DNE])+N(DNE).
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Also,
M(9[D U E]) + M(9[D N EJ)

= [ M@+ 16> ety + [ MOl + 15 > p))dcty
=M(0[1p + 1g])
< M(9[D]) + M(9[E)).
It follows that
e(M(9[D]) + M(O[E]))+ M(D ~E)+ M(DNE)+ N(E~ D)+ N(END)
= e(M(9[D]) + M(I[E])) + M(D) + N(E)
<e(MODNE])+M@ODUE)]))+ M(DUE)+N(DNE)
< e(MOD)+MQOIE)))+ M(DUE)+ N(DNE)
(M@O[D]+M@O[E))+M(D ~E)+ M(DNE)+ M(E~D)+ N(DNE).
O

M
M

I got the idea for following Theorem from [AC]

Theorem 9.2.1. Suppose S € M(Q), 0 < € < oo, A is a nonempty subfamily of
n.(Ng) and spt [UA] is compact. Then

NA€n.(Ng) and UAEn(Ng).
Proof. Let
f) :/ |f —1g|dL™ for f e F(Q).
For each y € R let U, be as in %eﬁnition (7.2.2). Recall from that
n. (N, if1< ,
ne(Uy) = {nEN?) if0 < z i TO
Suppose A, B €n.(Ng) and 0 <a<b<c<1. Let
G=(Ax(0,b)U(B x(b1)) €G(Q).
By Theorem 7.4.3 we find that G' € m.(F). From Theorem 7.4.2 we infer that
AUB={G'>a} €n,(Ns) and ANB={G'>c} €n(Ns).

It follows that the Theorem holds if A is finite.
Let

and n.(—Uy) = n(Ny)if —oo <y < 0.

a=sup{L"(A4): A e A},
note that 0 < a < oo and let B be a sequence in A such that
lim £"(B,) = «
Let C, = U} B, for each v € P. Then C' is a nondecreasing sequence in A. It
follows from the result of the preceding paragraph and Proposition 4.9.2 that D =
U2 ,C, € n(Ng). Obviously, D C UA. Were it the case that L"(UA ~ D) > 0
there would exist E € A such that L"(E ~ D) > 0. This would imply

L*"(DUE) =1liminf £"(C, UE) > lim L"(C,) =«

which in turn would imply that £L*(DUE) > « which is impossible. Thus £"(UA ~
D) =0 and this implies UA € n.(Ng).
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To handle NA we let
a =inf{L"(A) : A € A},
choose a sequence B in A such that
lim £"(B,) = «,

V—00
let €, =N;,_; B, for each v € P, note that C' is a nonincreasing sequence in A and
argue that D =N ,C, € A. O

Theorem 9.2.2. Suppose M € M(R"™); M is local; C is a closed convex subset of
R™ and
(9.2.1) M(E) > M(0) whenever E € M(R™) and L"(ENC)=0.

Then spt [D] is compact subset of C' whenever D € n (M).

Remark 9.2.1. Evidently, (9.2.1) is equivalent to the statement that m(z) > 0 for
L™ almost all x € R™ ~ C' where m is as in Proposition 7.1.2.

Proof. Suppose D € n.(M). It follows from Proposition 6.0.2 and Corollary 5.4.1
that spt [D] is compact. From Theorem 4.8.2 we find that

M(9[C N D]) < M(9[D)).
Moreover, as M is local and D € n.(M),
e(M(A[D]) —M@DNC))<M(DNC)—M(D)=M(®)—M(D ~C) <0.
Thus M(9[CND]) = M(9[D]) so the Theorem now follows from Theorem 4.8.2. O

9.3. Two very useful theorems in the denoising case. We suppose through-
out this subsection that

v:R—R,
~ is locally Lipschitzian, « is decreasing on (0,00) and + is increasing on (0, 00).
We let

F(f)= /Q'y(f(x) —s(x))dL"z whenever f € F(Q).

Proposition 9.3.1. Suppose 0 < € < oo, f € m(F),
u = inf{ess sup f|( ~ K) : K is a compact subset of Q};

and
I =sup{ess inf f|(2 ~ K) : K is a compact subset of Q}.
Then
INessinfs < f(z) <uVesssups for L" almost all x € Q.

Remark 9.3.1. It follows from Corollary 5.4.2 that u =0 and | =0 if Q = R",

Proof. Suppose u V ess sups < M < oco. Then K =spt[f — f A M] is a compact
subset of 2 so

/ Y(f(z) = s(z)) — (M — s(x)) dL" "z
{f>M}

F(f) = F(fNM)

< e(|o[f A MI||(K) — [IO[1I|(K))

- [ ot = i) acty

M
0.

IN
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For £™ almost all x € Q such that f(x) > M we have
flz) —s(x) >M —s(z) >0
so that, for such x,
V(f(@) = s(x)) —v(M = s(z)) > 0.
It follows that L™({f > M}) = 0. Owing to the arbitrariness of M we find that

L"({f >uVesssups})=0.
By a similar argument we deduce that £L"({f <V ess infs}) = 0. O

Theorem 9.3.1. Suppose 2 =R", 0 < e < o0, f € m(F) and, for each y € R,

t > ) >
C(y) equals the closed convex hull of spt [{s > y}] ny 20,
spt [{s <y}] ify<0.

Then
spt[({f >y} CC(y) ify>0 and spt[{f <y} CCly) ify<0
for L almost all y.
Proof. suppose b € (0,00). Let
g = fli<y +br2py~0w) + Flir=pnce)
and note that
> if y <9,
{gp >y} = =) LU=

{fzytnCH) ify>>

whenever y € R. It follows from Theorem 4.8.2 that
M(9[{gp > y}]) < M(O[{f > y}]) whenever y € R.

Let K, = spt[f — gy for each b € (0,00). Since {f — gy, # 0} C {f > b} we
infer from Theorem 6.0.1, Theorem 5.2.6, and Theorem 5.4.1 we infer that K is
compact. Since f € m.(F) we infer with the help of (4.5.5) that

[ @) - se) (0 s e
(F>b}~C ()

= F(f) = Fg)
< e(|10lg]l1(Kb) = [OLf1](K5))

—c [ 1ol = uIICED) ~ 191 = ) ac'y

<0.
which implies L*({f > b} ~ C(b)) = 0.
In a similar fashion one handles the case b < 0. O

10. SOME EXAMPLES.
Suppose
n=2 and Q=R2%
Let
S =[-1,1] x [-1,1] € M(R?) andlet s=1g¢€ F(R?).
Suppose 1 < p < oo and

1
Y(y) = ];Iylp fory e R
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and let
F(f)= /’y(y — s(x))dL*r  whenever f € M(R?).
For each r € (0,1] and each i = 0,1,2,3 let
Aip={1=r,1=7r)+7r{(cosb,sinb) : in/2 < 0 < (i + 1) /2}.

Let
Cr
be the convex hull of U?_j4; .

Theorem 10.0.2. Suppose 0 < € < 0o and
T =A{lgl: g € m(F)}.
If 1+ /7/2)e > 1 then
T =1{0}.
If(1++/7/2)e=1 andp =1 then
T={tle]:0<t <1}
If1++/7/2)e<1 andp =1 then
T ={[lc.]}-
If1++/7/2)e=1 and p > 1 then
T = {0}.
IfQ+r/2e<1;p>1;
Y =1- (1+v7/2)e)"/"Y;
and [ € BVZOC(RQ) is such that
essinff =0; esssupf=Y;
and, whenever 0 <y <Y,

[{f > yH = [lCT(y)}

where

then

Proof. For each y € R ~ {0} let U, be as in 1.5. We will make use of 7.4.2 and
7.4.3. For this purpose let

Q, ={[D]: D en(U,)} whenever y € R~ {0}.

Suppose E € M(Q) and £%(E) > 0. From Corollary 7.5.1 and (7.6) we find that
Uy(E)>0if y > 1and —Uy(E) >0 if y < 0. It follows that

Qy =10} ify>1ory<0.
Suppose 0 <y < 1, let

1 ifp=1
Z = P70 andlet R= <
(1—y)P ifp>1 Z
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Suppose R < 1 and let
I = eM(3[CR]) + U, (Cr).
We calculate
eM(9[CR]) = €(4(2 — 2R) + 27R

and, with the help of Corollary 7.5.1 and (7.6),

U,(Cr) = —ZL*(Cr) = —Z(4— (4 — 7)R?)
SO

I=e(4(2—2R)+27R) — Z(4— (4 — 7)R?)

—47% + 8¢Z + (1 — 4)e?
Z

2 - vEaZ - (- Va2
A

Since R < 1 we have
Z=¢/R>e>(1—7/2)e.
Thus
I<0=M@O0+U,0) & Z>(1+/7/2)e.
Suppose E € n.(U,) and [E] # 0. I claim that
(10.0.1) R<1 and [E]={[Cg]}.

From Theorem 9.2.2 we infer that spt [E] C S. Let U equal the interior of S and
let M = U Nbdry E. Then U N M # ) since otherwise we would have E = S in
which case M would have corners which is incompatible with Theorem 5.5.1. Let
A be a connected component of M. We infer from 8.2 that A is an arc of a circle of
radius R the length of which does not exceed mR. Because M can have no corners
we find that A meets the interior of the boundary of S tangentially. Thus (10.0.1)
holds.

The Theorem now follows from 7.4.2 and 7.4.3. (I
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